If the engine is closed while a compaction is going on, the close call
blocks until the goroutine exits. This could be several minutes because
the control does not return back up to the channel selector while there is
still data to write.
* Update compaction to look at newest files of the smallest step first
* Update compaction to look at older files in larger steps if newer files don't have enough small steps to compact
* Changed the TestDefaultCompactionPlanner_CombineSequence test to reflect what's possible now. We'd only have multiple files in the same generation if the all files but one were over the max allowable size.
* Clean up the logic on when full compactions are run and when planning can be skipped
* Update Plan to do a full compaction if cold for writes
* Remove MaxFileSize as a config variable from Compactor. Should be a set constant
* Update Plan to keep track of if the last check was fully compacted so we can skip future planning calls
* Update compact min file count to 3 so that compactions run more frequently
* remove rolloverTSMFileSize constant that is no longer used
* remove the maxGenerationFileCount since it is no longer a limitation that's necessary with the new compaction scheme. We no longer read WAL segments as part of the compaction so memory is only used as we read in each individual key
* remove minFileCount and switch to a user configurable variable
* remove the mutex from WALSegmentWriter. There's never more than one open in the WAL at one time and it's not exported through any function so the lock on the WAL should be used. This simplified keeping track of the last write time and removed a bunch of unnecessary locks.
* update WALSegmentWriter.Write to take the compressed bytes so that encoding and compression can occur before the call to write (while we don't hold the WAL lock)
* remove a bunch of unnecessary locking in WAL.writeToLog
* Add check for TSM file magic number and vesion
* Remove old tsm, log, and unused cursor code
* Remove references to tsm1dev everywhere except in the inspector
* Clean up config options for compaction and snapshotting
* Remove old TSM configuration options
* Update the config.sample.toml with TSM options
* Update WAL compact to force if it has been cold for writes for a configurable period of time (1h by default)
Something broke with writing to the WAL now that compactions are running
concurrently. There was also a performance problem with Next/Prev doing
twice as many searches as necessary.
* Update cache to have a single slice of values for a key (removed checkpoints)
* Changed compact.Plan to only worry about TSM files.
* Updated Plan to not return an error since there was no case in which it would.
* Update WAL to not keep stats since they're no longer needed.
* Update engine to flush the Cache/WAL to a new TSM file when the min threshold is hit.
* Split compact logic between TSM compacts and WAL/Cache writes.
* Remove unnecessary merge iterator, wal segment iterator, and other no longer necessary stuff.
* Remove the asending bool from the Dedupe method. Values should always be in ascending order. It's up to the cursor to iterate through values based on the direction. Giving the cursor responsibility makes it so we don't need to sort, dedupe or reallocate anything for different query orders.
* Updated engine to use its locks to ensure writes and cache flushes don't cause a race.
* Update all tests with new signatures. Removed a bunch of tests around TSM rewrites and WAL segment iteration that are no longer necessary.
Getting an intermittent test failure with this so removing it for now since compactions
are still able to keep up without it. Will need to look into this further because the
allocations is still very high and will affect compactions over longer periods of time.
MergeIterator will be used to merge multiple TSM KeyIterators and the
WAL KeyIterator using a stream based iteration approach. Each iteration
cycle returns a key and values ordered in way to write a new TSM file
optimally.
This provides and interface and type to combine multiple WAL segments
in order and then allow the values to be read in an order suitable for
writing to a TSM file.