There is a lot of confusion in the code if the range is [start, end) or
[start, end]. This is not made easier because it is acts one way in some
areas and in another way in some other areas, but it is usually [start,
end]. The `time = ?` syntax assumed that it was [start, end) and added
an extra nanosecond to the end time to accomodate for that, but the
range was actually [start, end] and that caused it to include one extra
nanosecond when it shouldn't have.
This change fixes it so exactly one timestamp is selected when `time = ?`
is used.
When rewriting fields, wildcards within binary expressions were skipped.
This now throws an error whenever it finds a wildcard within a binary
expression in order to prevent the panic that occurs.
This commit introduces a new interface type, influxql.Authorizer, that
is passed as part of a statement's execution context and determines
whether the context is permitted to access a given database. In the
future, the Authorizer interface may be expanded to other resources
besides databases. In this commit, the Authorizer interface is
specifically used to determine which databases are returned when
executing SHOW DATABASES.
When HTTP authentication is enabled, the existing meta.UserInfo struct
implements Authorizer, meaning admin users can SHOW every database, and
non-admin users can SHOW only databases for which they have read and/or
write permission.
When HTTP authentication is disabled, all databases are visible through
SHOW DATABASES.
This addresses a long-standing issue where Chronograf or Grafana would
be unable to list databases if the logged-in user did not have admin
privileges.
Fixes#4785.
The code that checked if a query was authorized did not account for
sources that were subqueries. Now, the check for the required privileges
will descend into the subquery and add the subqueries required
privileges to the list of required privileges for the entire query.
During development, I, at some point, decided that the dimensions should
be expanded based on what was available rather than what was present in
the subquery. I don't really know the rationale for this because I
forgot, but it doesn't make sense or seem to be particularly useful.
Expanding dimensions now just uses the values specified in the subquery
rather than expanding to all available dimensions of the measurement in
the subquery.
Previously, only time expressions got propagated inwards. The reason for
this was simple. If the outer query was going to filter to a specific
time range, then it would be unnecessary for the inner query to output
points within that time frame. It started as an optimization, but became
a feature because there was no reason to have the user repeat the same
time clause for the inner query as the outer query. So we allowed an
aggregate query with an interval to pass validation in the subquery if
the outer query had a time range. But `GROUP BY` clauses were not
propagated because that same logic didn't apply to them. It's not an
optimization there. So while grouping by a tag in the outer query
without grouping by it in the inner query was useless, there wasn't any
particular reason to care.
Then a bug was found where wildcards would propagate the dimensions
correctly, but the outer query containing a group by with the inner
query omitting it wouldn't correctly filter out the outer group by. We
could fix that filtering, but on further review, I had been seeing
people make that same mistake a lot. People seem to just believe that
the grouping should be propagated inwards. Instead of trying to fight
what the user wanted and explicitly erase groupings that weren't
propagated manually, we might as well just propagate them for the user
to make their lives easier. There is no useful situation where you would
want to group into buckets that can't physically exist so we might as
well do _something_ useful.
This will also now propagate time intervals to inner queries since the
same applies there. But, while the interval propagates, the following
query will not pass validation since it is still not possible to use a
grouping interval with a raw query (even if the inner query is an
aggregate):
SELECT * FROM (SELECT mean(value) FROM cpu) WHERE time > now() - 5m GROUP BY time(1m)
This also means wildcards will behave a bit differently. They will
retrieve dimensions from the sources in the inner query rather than just
using the dimensions in the group by.
Fixing top() and bottom() to return the correct auxiliary fields.
Unfortunately, we were not copying the buffer with the auxiliary fields
so those values would be overwritten by a later point.
This adds query syntax support for subqueries and adds support to the
query engine to execute queries on subqueries.
Subqueries act as a source for another query. It is the equivalent of
writing the results of a query to a temporary database, executing
a query on that temporary database, and then deleting the database
(except this is all performed in-memory).
The syntax is like this:
SELECT sum(derivative) FROM (SELECT derivative(mean(value)) FROM cpu GROUP BY *)
This will execute derivative and then sum the result of those derivatives.
Another example:
SELECT max(min) FROM (SELECT min(value) FROM cpu GROUP BY host)
This would let you find the maximum minimum value of each host.
There is complete freedom to mix subqueries with auxiliary fields. The only
caveat is that the following two queries:
SELECT mean(value) FROM cpu
SELECT mean(value) FROM (SELECT value FROM cpu)
Have different performance characteristics. The first will calculate
`mean(value)` at the shard level and will be faster, especially when it comes to
clustered setups. The second will process the mean at the top level and will not
include that optimization.
This commit adds support for replacing regexes with non-regex conditions
when possible. Currently the following regexes are supported:
- host =~ /^foo$/ will be converted into host = 'foo'
- host !~ /^foo$/ will be converted into host != 'foo'
Note: if the regex expression contains character classes, grouping,
repetition or similar, it may not be rewritten.
For example, the condition: name =~ /^foo|bar$/ will not be rewritten.
Support for this may arrive in the future.
Regexes that can be converted into simpler expression will be able to
take advantage of the tsdb index, making them significantly faster.
Previously, calling derivative with a non-duration second argument was
allowed during parsing but would panic during execution due to a failed
type conversion. This change ensures the second argument is a duration
literal.
The functionality works the same as wildcards, but this time, you can
specify a regular expression.
One limitation is that you can't specify whether you only want to select
fields or tags. Since the regex can be changed to suit the person's
needs, I don't currently think this is an issue.
When attempting to reduce the WHERE clause, the time literals had not
been converted from string literals yet. This adds the functionality to
have it handle the same time math when the time literal is still a
string literal.
It is now possible to use a mixed duration unit like `1h30m`. The
duration units can be in whatever order as long as they are connected to
each other.
There is a change to the scanner. A token such as `10x` will be scanned
as a duration literal, but will then fail to parse as an invalid
duration. This should not be a breaking change as there is no situation
where `10m10` was a valid order of tokens for the parser.
Fixes#3634.
A query's String method is called multiple times per query. This commit
ensures all calls to query.String share use of a strings.NewReplacer.
This approximately halves the number of allocations for the benchmarked
query.
Casting syntax is done with the PostgreSQL syntax `field1::float` to
specify which type should be used when selecting a field. You can also
do `field1::field` or `tag1::tag` to specify that a field or tag should
be selected.
This makes it possible to select a tag when a field key and a tag key
conflict with each other in a measurement. It also means it's possible
to choose a field with a specific type if multiple shards disagree. If
no types are given, the same ordering for how a type is chosen is used
to determine which type to return.
The FieldDimensions method has been updated to return the data type for
the fields that get returned. The SeriesKeys function has also been
removed since it is no longer needed. SeriesKeys was originally used for
the fill iterator, but then expanded to be used by auxiliary iterators
for determining the channel iterator types. The fill iterator doesn't
need it anymore and the auxiliary types are better served by
FieldDimensions implementing that functionality, so SeriesKeys is no
longer needed.
Fixes#6519.
Also removes the functions `HasSimpleCount()` and `HasCountDistinct()`
as they are no longer useful. They had a small role in validation that
has now been moved into `validateAggregates()`.
Fixes#6472.
A bigger refactor of these functions is needed to support #3290, but
this will work for the more common case that someone uses double quotes
instead of single quotes when surrounding a time literal.
Fixes#3932.
Numbers in the query without any decimal will now be emitted as integers
instead and be parsed as an IntegerLiteral. This ensures we keep the
original context that a query was issued with and allows us to act more
similar to how programming languages are typically structured when it
comes to floats and ints.
This adds functionality for dealing with integers promoting to floats in
the various different places where math are used.
Fixes#5744 and #5629.
`SHOW TAG VALUES` output has been modified to print the measurement name
for every measurement and to return the output in two columns: key and
value. An example output might be:
> SHOW TAG VALUES WITH KEY IN (host, region)
name: cpu
---------
key value
host server01
region useast
name: mem
---------
key value
host server02
region useast
`measurementsByExpr` has been taught how to handle reserved keys (ones
with an underscore at the beginning) to allow reusing that function and
skipping over expressions that don't matter to the call.
Fixes#5593.
When a wildcard is specified for the field but not the dimensions, the
dimensions get added to the list of fields as part of
`RewriteWildcards()`.
But when a dimension was given with no wildcard, the dimension didn't
get removed from the wildcard in the fields section. This teaches the
rewriter to disclude dimensions explicitly included from being expanded
as a field. Now this statement when a measurement has one tag named host
and a field named value:
SELECT * FROM cpu GROUP BY host
Would expand to this:
SELECT value FROM cpu GROUP BY host
Instead of this:
SELECT host, value FROM cpu GROUP BY host
If you want the latter behavior, you can include it like this:
SELECT host, * FROM cpu GROUP BY host
Fixes#5770.
The name of the column will be every measurement located inside of the
math expression in the order they are encountered in within the
expression.
Also handle `*influxql.ParenExpr` in the function
`(*influxql.Field).Name()`
Fixes#5730.
go 1.5 was being used to develop the query engine branch, but we aren't
using 1.5 for master at the moment. This fixes issues that go vet brings
up in 1.4 that don't exist in 1.5.