Negative timestamps are now supported. We also now refuse two
nanoseconds that are at the edge of the minimum time window. One of the
nanoseconds we do not accept is because we need MinInt64 to be used for
some internal comparisons in the TSM engine and it was causing an
underflow when we subtracted one from the minimum time. The second is so
we can have one minimum time that signifies the default minimum that
nobody can write to (so we can implicitly rewrite the timestamp on
aggregate queries) but still use the explicit timestamp if it is given
to us by the user. We aren't able to tell the difference between if the
user provided it or if it was implicit without those values being
different.
If the default minimum time is used with an aggregate query, we rewrite
the time to be the epoch for backwards compatibility since we believe
that's more important than supporting that extra nanosecond.
This commit limits queries to only process one shard at a time.
However, within a shard, multiple series can still be processed in
parallel. Shard iterators are lazily instantiated during query
execution to limit the amount of memory a given query uses.
The highest time represented by a nanosecond needs to be used for an
exclusive range, so the maximum time needs to be one less than the
possible maximum number of nanoseconds representable by an int64 so that
we don't lose a point at that one time.
Previously worked in the open source version because the timestamp used
for finding a shard would be truncated by the retention policy so the
lookup time didn't run into this edge case because it didn't rest on the
truncation boundary. Since that point didn't really belong in that shard
group and was placed there by mistake, it's best to fix this bug since
the timestamp used to create the shard group should be capable of
retrieving it.
This allows us to add additional options to ExecuteQuery without
creating parameter bloat.
Removing the unused Series structs. Their necessity was removed by a
previous commit, but the structs were not removed yet.
Add another type of interrupt iterator that monitors the interrupt
channel and calls `Close()` on the iterator when the interrupt happens.
It will primarily be used for asynchronously closing the ReaderIterator,
but it will only close the read side of the connection properly. More
work needs to be done to allow closing the write side efficiently.
Casting syntax is done with the PostgreSQL syntax `field1::float` to
specify which type should be used when selecting a field. You can also
do `field1::field` or `tag1::tag` to specify that a field or tag should
be selected.
This makes it possible to select a tag when a field key and a tag key
conflict with each other in a measurement. It also means it's possible
to choose a field with a specific type if multiple shards disagree. If
no types are given, the same ordering for how a type is chosen is used
to determine which type to return.
The FieldDimensions method has been updated to return the data type for
the fields that get returned. The SeriesKeys function has also been
removed since it is no longer needed. SeriesKeys was originally used for
the fill iterator, but then expanded to be used by auxiliary iterators
for determining the channel iterator types. The fill iterator doesn't
need it anymore and the auxiliary types are better served by
FieldDimensions implementing that functionality, so SeriesKeys is no
longer needed.
Fixes#6519.
This commit moves the `CallIterator` to wrap the individual series
instead of wrapping a shard. This allows individual points to be
aggregated before being merged.
This will cause a small increase in memory usuage per series but
it shows a 20% decrease in query time when there are a moderate
number of points per series.
This commit changes the `SeriesIterator` to process one measurement
at a time and uses a `floatFastDedupeIterator` to avoid point
encoding during deduplication.
If a shard is empty for a specific field and the field type is something
other than a float, a nil iterator would get returned from one of the
empty shards and cause the combined iterators to be cast to the float
type and all other iterator types to be discarded (or for integers, to
be cast).
This is rare since most aggregates don't accept strings or booleans, but
for queries like:
SELECT distinct(string) FROM mydata
It would result in nothing getting returned if one of the shards didn't
have a value for `string`.
This change modifies the query engine to return nil for the shards
instead of a fake iterator and then to only use the fake iterator if the
final aggregate iterator is nil (meaning that no iterators could be
constructed for the field from any shard).
Fixes#6495.
An offset of `time(1m, now())` will anchor the offset to the current
time of the query. The default offset is `0s` which is the current
default anyway.
This fixes#2074 by making time zone offset support unnecessary. Time
comparisons can use timezones inside of the time clause and the offset
needed for non-hour timezone differences can be used as part of the
offset argument.
This also switches the remaining iterators to be lazy so they can return
errors properly. They needed to be converted to lazy initialization
anyway, which has the side effect of making it much easier for us to
propagate the underlying error during initialization.
Updated the Emitter to return errors when it cannot read properly from
the iterators.
This commit changes the channel iterators to use a double buffer
to reduce allocations. The caller of `Iterator.Next()` must copy
out the point before calling `Next()` again.
This commit makes a number of performance improvements to
reduce allocations during query execution. Several objects
and buffers are now reused across the components to avoid
allocations.
Previously a simple `count(value)` query across 1M points
would require 26,000+ allocations. After the changes in
this commit that number has been reduced to 88.
Fixes#6211.
In Go-land packages with the same name, e.g., internal, do not clash
with each other when they're in different parts of the project. However
with protobufs definitions will clash if they share the same package
name.
This commit renames the influxql protobuf package to `influxql` to
avoid a clash with a message definition in another protobuf package
called internal. Go package aliases allow us to continue to refer to the
internal package as `internal` rather than `influxql`.
A bigger refactor of these functions is needed to support #3290, but
this will work for the more common case that someone uses double quotes
instead of single quotes when surrounding a time literal.
Fixes#3932.
This commit adds an `IteratorStats` that holds aggregate
iterator processing information. A method is also added to
`Iterator` to return the stats:
Stats() influxql.IteratorStats
The remote iterators will also emit their stats in the point
stream upon first connection, on a given interval, and then
finally once the last point has been sent.
Use of the iterator is spread out into both `IteratorCreators` and
inside of the iterators themselves. Part of the interrupt must be
handled inside of the engine so it stops trying to emit points when an
interrupt is found and another part of the interrupt has to happen when
combining the iterators so it doesn't just start reading the next shard.
Now the AuxIterator will know when it is backgrounded so that it can
stop reading from the primary iterator when all of the child iterators
have been closed.
This commit moves the `tsdb.Store.ExpandSources()` function onto
the `influxql.IteratorCreator` and provides support for issuing
source expansion across a cluster.
The primary input iterator for an aux iterator would continue trying to
send points to a closed channel even after an aux iterator had already
been closed.
This changes the aux iterators to use sync.Cond instead of channels and
lower level syncing primitives for handling buffered input/output.
Fixes#5974.
Previously the call iterator would normalize the time to the interval
for all calls. This meant that when `first()` or `last()` was called
with no group by interval the value would be found for each shard, the
time was normalized, then it tried to find the value between the shards
(but no longer with any time data as that had already been eliminated).
This removes part of the time logic from the call iterators and makes a
new iterator `IntervalIterator` to normalize the times as they come out
of the underlying iterator.
Fixes#5890.
The RPC handler for remote queries would attempt to reuse a closed
connection for certain commands that didn't use pooling. The RPC
commands that close the connection have been fixed to not try reusing
the connection.
When creating an iterator, if there are no points to return, the points
decoder would hit an EOF that it didn't catch and would return that
error back to the client who made the request. It now properly returns
no points by using a `nilFloatIterator` if there are no points to
return.
This fixes remote execution when a cluster has nothing to return.
The select call and the query executor would both calculate the time
range, but in separate ways. The query executor needed some way to pass
in the implicit end time that is placed there by the query executor.
Fixes#5636.
The additional locks shouldn't be necessary due to how the code is used,
but should prevent any potential data races in case we accidentally do
something bad.
The AuxIterator streams points to the underlying iterators. When it
started automatically, race conditions occurred between the stream
closing the iterators and creating iterators from the AuxIterator.