This switches compactions to use type values (FloatValues) from the
generic Values type. It avoids a bunch of allocations where each value
much be converted from a specific type to an interface{}.
This code was added to address some slow startup issues. It is believed
to be the cause of some segfault panic's that occur at query time when
the underlying MMAP array has been unmapped. The current structure of
code makes this change unnecessary now.
The timezone for a query can now be added to the end with something like
`TZ("America/Los_Angeles")` and it will localize the results of the
query to be in that timezone. The offset will automatically be set to
the offset for that timezone and offsets will automatically adjust for
daylight savings time so grouping by a day will result in a 25 hour day
once a year and a 23 hour day another day of the year.
The automatic adjustment of intervals for timezone offsets changing will
only happen if the group by period is greater than the timezone offset
would be. That means grouping by an hour or less will not be affected by
daylight savings time, but a 2 hour or 1 day interval will be.
The default timezone is UTC and existing queries are unaffected by this
change.
When times are returned as strings (when `epoch=1` is not used), the
results will be returned using the requested timezone format in RFC3339
format.
There is a lot of confusion in the code if the range is [start, end) or
[start, end]. This is not made easier because it is acts one way in some
areas and in another way in some other areas, but it is usually [start,
end]. The `time = ?` syntax assumed that it was [start, end) and added
an extra nanosecond to the end time to accomodate for that, but the
range was actually [start, end] and that caused it to include one extra
nanosecond when it shouldn't have.
This change fixes it so exactly one timestamp is selected when `time = ?`
is used.
This commits adds a caching mechanism to the Data object, such that
when large numbers of users exist in the system, the cost of determining
if there is at least one admin user will be low.
To ensure that previously marshalled Data objects contain the correct
cached admin user value, we exhaustively determine if there is an admin
user present whenever we unmarshal a Data object.
If a bad query is run, kill query and limits would not kick in until
after it started executing. Some bad queries that involve high
cardinality can cause the server to OOM just from planning which
defeats the purpose of the max-select-series limit.
This change primarily fixes max-select-series limit so that the query
is killed earlier and has the side effect that kill query now can kill
a query while it's being planned.
The underlying iterators were not closed when a query was kill so
although the client would receive an error, the query would continue
on until completion.
The limit waited until all the iterators had been created which still
allows problem queries to be planned. This allows the queries to be
aborted much earlier in some cases.
The liner dependency now handles the scenario where the terminal width
is reported as zero. Previously, liner would panic when it tried to
divide by the width (which was zero). Now it falls back onto a dumb
prompt rather than attempting to use a smart prompt and panicking.
When there were multiple series and anything other than the last series
had any null values, the series would start using the first point from
the next series to interpolate points.
Interpolation should not cross between series. Now, the linear fill
checks to make sure the next point is within the same series before
using it to perform interpolation.
When rewriting fields, wildcards within binary expressions were skipped.
This now throws an error whenever it finds a wildcard within a binary
expression in order to prevent the panic that occurs.
Instead of incrementing the `queryOk` statistic with or without the
continuous query running, it will only increment when the query is
actually executed.