* fix(query): Group By queries with offset that crosses a DST boundary can fail
Customer reported that a GROUP BY query with an offset that caused an interval
to cross a daylight savings change inserted an extra output row off by one hour.
This fix ensured that the start time for the interval of a GROUP BY operator is
correctly set before calculating the time zone offset for that date and time.
Add TestGroupByIterator_DST() in query/iterator_test.go
for regression testing of this bug.
Fixes https://github.com/influxdata/influxdb/issues/20238
The query authorizer was not being properly passed to subqueries so
rejections did not happen when a subquery was the one reading the value.
Similarly, the max series limit was not being propagated downwards
either.
The following would, erroneously, not strip the tag from the inner
query:
SELECT value FROM (SELECT value FROM cpu GROUP BY host)
The inner query was supposed to group by the host tag, but the outer
query should strip it away since it is not being grouped by anymore.
This fixes things so that the result will have the tags stripped away
when they are not requested in the grouping.
This also fixes the cursor system to abandon iterators that will not
produce meaningful results since the variables are all unknown types.
This creates a weird behavior that existed in previous releases and we
are keeping here for backwards compatibility. If a subquery referenced a
field that didn't exist in the subquery, it will return nothing. But, if
there are two subqueries and one of them has the field exist and the
other doesn't, the second will return all null values.
This change makes it so that we simplify the math engine so it doesn't
use a complicated set of nested iterators. That way, we have to change
math in one fewer place.
It also greatly simplifies the query engine as now we can create the
necessary iterators, join them by time, name, and tags, and then use the
cursor interface to read them and use eval to compute the result. It
makes it so the auxiliary iterators and all of their complexity can be
removed.
This also makes use of the new eval functionality that was recently
added to the influxql package.
No math functions have been added, but the scaffolding has been included
so things like trigonometry functions are just a single commit away.
This also introduces a small breaking change. Because of the call
optimization, it is now possible to use the same selector multiple times
as a selector. So if you do this:
SELECT max(value) * 2, max(value) / 2 FROM cpu
This will now return the timestamp of the max value rather than zero
since this query is considered to have only a single selector rather
than multiple separate selectors. If any aspect of the selector is
different, such as different selector functions or different arguments,
it will consider the selectors to be aggregates like the old behavior.
Along with modifying ExecutionContext to be a context and have the
TaskManager return the context itself, this also creates a Monitor
interface and exposes the Monitor through the Context. This way, we can
access the monitor from within the query.Select method and keep all of
the limits inside of the query package instead of leaking them into the
statement executor.
An eventual goal is to remove the InterruptCh from the IteratorOptions
and use the Context instead, but for now, we'll just assign the done
channel from the Context to the IteratorOptions so at least they refer
to the same channel.
The implicit time range for an interval is supposed to be now when no
end is specified. In a subquery though, the interval doesn't exist and
so it doesn't set the end time to now, but to the max time. Since the
subquery qualifies as something that should have the implicit end time
apply, this results in a query that runs slowly because it is filling in
a bunch of unasked for intervals if a fill is specified.
This hack adds the implicit end time if it sees the parent query's end
time is set to the maximum available time.
This is a temporary fix for this problem. The query compilation should
perform these time range calculations in the compilation stage and the
subqueries should use the compilation stage during execution instead of
ignoring it. That work takes a lot more effort though and is more prone
to running into unforeseen bugs.
This fix introduces a subtle, but likely rare to run into bug. If the
top level query specifies the maximum time as the end time and the
subquery has an interval, the subquery should use the end time rather
than now as the time range. With this hack, it will interpret it as an
implicit time rather than an explicit one. This is unlikely to matter
though.
This commit adds time support to SHOW TAG VALUES. Time can be used as
both a lower and upper boundary. However, there are some caveats.
For the `inmem` index, filtering by time will still return all results
because the index data is shared across shards.
For the `tsi1` index, filtering by time will only work down to the shard
lever. Specifically, when querying by time all shards within that time
range will be used to generate the results.
* Introduces EXPLAIN ANALYZE command, which
produces a detailed tree of operations used to
execute the query.
introduce context.Context to APIs
metrics package
* create groups of named measurements
* safe for concurrent access
tracing package
EXPLAIN ANALYZE implementation for OSS
Serialize EXPLAIN ANALYZE traces from remote nodes
use context.Background for tests
group with other stdlib packages
additional documentation and remove unused API
use influxdb/pkg/testing/assert
remove testify reference
Field math works similar to condition evaluation, but not the exact same
because we have more information to work with in field expressions than
we do in conditional math because fields retain the information about
their source while conditions do not.
The main difference is that you cannot add an unsigned literal to the
output of an integer iterator while you can inside of a condition. You
can perform math on a positive integer literal to an unsigned iterator.
Inside of the condition, we aren't sure if an integer is because of a
literal or because of an iterator so we can't make that distinction.
Originally, casting was performed inside of the query engine especially
for call iterators. Currently, the engine takes care of all casting so
we just need to normalize the iterators types for type safety reasons
rather than actual functional reasons.
Removing this code. Cover coverage showed that it was not hit when run
against the actual server. I ran the tests package and got code coverage
of the query package while running the tests in that package.
It prints the statistics of each iterator that will access the storage
engine. For each access of the storage engine, it will print the number
of shards that will potentially be accessed, the number of files that
may be accessed, the number of series that will be created, the number
of blocks, and the size of those blocks.
Previously, subqueries would honor their own ordering. We never really
supported that and I have no idea if it would work since most parts in
the query engine assume that points are being delivered in only one
ordering.
Subqueries have now been modified so if a person tries to do different
ordering, they get an error when running the query. If they specify an
ordering in the top most query, that ordering gets propagated to all
subqueries.
Fixes#8699.
The first call is to compile the query. This performs some initial
processing that can be done before having any access to the shards. At
the moment, it does very little, but it's intended to be changed to
eventually perform initial validations of the query and create an
internal graph structure for the execution of the query.
The second call is to prepare the query. This step has access to the
shard mapper. Right now, it just maps the shards and rewrites the fields
of the query for any wildcards. In the future, it is intended to do the
above, but also to prepare the final directed acyclical graph that will
execute the query.
The third call is to select the query. This step is intended to create
all of the iterators for processing the query. At the moment, much of
the work intended for the second step is performed in the third step.
The statement rewriting logic should be in the query engine as part of
preparing a query. This creates a shard mapper interface that the query
engine expects and then passes it to the query engine instead of
requiring the query to be preprocessed before being input into the query
engine. This interface is (mostly) the same as the old interface, just
moved to a different package.
The ConditionExpr function is more accurate because it parses the
condition and ensures that time conditions are actually used correctly.
That means that attempting to combine conditions with OR will not result
in the query silently pretending it's an AND and nested conditions work
correctly so there is only one way to read the query.
It also extracts the non-time conditions into a separate condition so we
can stop attempting to parse around the time conditions in lower layers
of the storage engine. This change does not remove those hacks, but a
following commit should be able to sanitize the condition and remove
them.
This change provides a clear separation between the query engine
mechanics and the query language so that the language can be parsed and
dealt with separate from the query engine itself.