Deleting high cardinality series could take a very long time, cause
write timeouts as well as dead lock the process. This fixes these
issue to by changing the approach for cleaning up the indexes and
reducing lock contention.
The prior approach delete each series and updated every index (inmem)
during the delete. This was very slow and cause the index to be locked
while it items in a slice were removed one by one. This has been changed
to mark series as deleted and then rebuild the index asynchronously which
speeds up the process.
There was also a dead lock that could occur when deleing the field set.
Deleting the field set held a write lock and the function it invoked under
the lock could try to take a read lock on the field set. This would then
deadlock. This approach was also very slow and caused time out for writes.
It now uses faster approach that checks for the existing of the measurment
in the cache and filestore which does not take write locks.
There are several places in the code where comma-ok map retrieval was
being used poorly. Some were benign, like checking existence before
issuing an unconditional delete with no cleanup. Others were potentially
far more serious: assuming that if 'ok' was true, then the resulting
pointer retrieved from the map would be non-nil. `nil` is a perfectly
valid value to store in a map of pointers, and the comma-ok syntax is
meant for when membership is distinct from having a non-zero value.
There was only one or two cases that I saw that being used correctly for
maps of pointers.
This change provides a clear separation between the query engine
mechanics and the query language so that the language can be parsed and
dealt with separate from the query engine itself.
The sortedSeriesIds slice was not getting reset to 0 which caused
the same series ids to exist in the slice more than once. Since
the size of the slice never matched the size of the seriesID map,
it kept appendending to the slice and sorting it which cause multiple
cursor to get created for the same series.
Fixes#8531
Currently two write locks in `inmem` are obtained and then
manually unlocked at function exit points. However, we have
reports that the `inmem` index is hanging on a write lock and
cannot track the issue down to anything else besides a lock
that could have been left unlocked because of a panic.
This commit changes the two locks to always defer their unlocks
to prevent these hangs.
This fixes the case where log files are compacted out of order
and cause non-contiguous sets of index files to be compacted.
Previously, the compaction planner would fetch a list of index files
for each level and compact them in order starting with the oldest
ones. This can be a problem for level 1 because level 0 (log files)
are compacted individually and in some cases a log file can finish
compacting before older log files are finished compacting. This
causes there to be a gap in the list of level 1 files that is
ignored when fetching a list of index files.
Now, the planner reads the list of index files starting from the
oldest but stops once it hits a log file. This prevents that gap
from being ignored.
This check was previously in a different section of code which
was lost during a refactor to the new compaction strategy. The
compaction planning now makes a check to ensure at least two
files are available for compaction in a level.