This commit carries out the initial refactor of the tsi1.Index into
tsi1.Partition. We then create a new tsi1.Index that will be an
abstraction over a collection of Partitions.
There was a very small window where it was possible to deadlock during
the close of the Store. When closing, the Store waited on its Waitgroup
under a `Lock`. Naturally, all other goroutines must have been in a
position to call `Done` on the `Waitgroup` before the `Wait` call in
`Close` would return.
For the goroutine running the `monitorShards` method it was possible
that it would be unable to do this. Specifically, if the `monitorShards`
goroutine was jumping into the `t.C` case as the `Close()` goroutine was
acquiring the `Lock` then then `monitorShards` goroutine would be unable
to acquire the `RLock`. Since it would also be unable to progress around
its loop to jump into the `s.closing` case, it would be unable to call
`Done` on the `WaitGroup` and we would have a deadlock.
This was identified during an AppVeyor CI run, though I was unable to
reproduce this locally.
Previously we used the EngineOptions to determine which shard index
type we were using. However, these options are set once at runtime
initialisation. Therefore if you're running with TSI enabled but then
accessing a legacy database with the inmem index, TagValues would not
have taken advantage of the inmem index.
This change ensures we always check the actual index of the shard(s).
This commit adds time support to SHOW TAG VALUES. Time can be used as
both a lower and upper boundary. However, there are some caveats.
For the `inmem` index, filtering by time will still return all results
because the index data is shared across shards.
For the `tsi1` index, filtering by time will only work down to the shard
lever. Specifically, when querying by time all shards within that time
range will be used to generate the results.
When a meta query does not include a time component then it can be
answered exclusively by the index. This should result in a much faster
query execution that if the TSM engine was engaged.
This commit rewrites the following queries such that they make use
of the index where no time component is present:
- SHOW MEASUREMENTS
- SHOW SERIES
- SHOW TAG KEYS
- SHOW FIELD KEYS
Update support in the `toml` package for parsing human-readble byte sizes.
Supported size suffixes are "k" or "K" for kibibytes, "m" or "M" for
mebibytes, and "g" or "G" for gibibytes. If a size suffix isn't specified
then bytes are assumed.
In the config, `cache-max-memory-size` and `cache-snapshot-memory-size` are
now typed as `toml.Size` and support the new syntax.
* Fprint* functions
* No nakedness
* clarify panic messages
* spacing between case statements
* remove break in favor of return
* remove goto in favor of for { continue }
* batch cursors return slices of timestamps and values to reduce call
overhead. Significantly improved iteration.
* added CreateCursor API to Shard, Engine
* moved build*Cursor to code gen
* array has already been sized correctly
* eliminates bounds checking for each element access
* reduces decoding of 30,000,000 points via storage API from
584ms to 540ms on average
Fixes#8989 and #8633.
Previously when issuing commands involving a regex check, walking
through the tags keys/values on a measurement, using the measurement's
index, would be racy.
This commit adds a new `TagKeyValue` type that abstracts away the
multi-layer map we were using as an inverted index from tag keys and
values to series ids. With this abstraction we can also make concurrent
access to this inverted index goroutine safe.
Finally, this commit fixes a very old bug in the index which will affect
any query using a regex. Previously we would always check _every_ tag
against a regex for a measurement, even when we had found a match.