The following functions require ordered input but were not guaranteed to
received ordered input:
* `distinct()`
* `sample()`
* `holt_winters()`
* `holt_winters_with_fit()`
* `derivative()`
* `non_negative_derivative()`
* `difference()`
* `moving_average()`
* `elapsed()`
* `cumulative_sum()`
* `top()`
* `bottom()`
These function calls have now been modified to request that their input
be ordered by the query engine. This will prevent the improper output
that could have been caused by multiple series being merged together or
multiple shards being merged together potentially incorrectly when no
time grouping was specified.
Two additional functions were already correct to begin with (so there
are no bugs with these two, but I'm including their names for
completeness).
* `median()`
* `percentile()`
If there were multiple selectors and math, the query engine would
mistakenly think it was the only selector in the query and would not
match their timestamps.
Fixed the query engine to pass whether the selector should be treated as
a selector so queries like `max(value) * 1, min(value) * 1` will match
the timestamps of the result.
This commits adds a caching mechanism to the Data object, such that
when large numbers of users exist in the system, the cost of determining
if there is at least one admin user will be low.
To ensure that previously marshalled Data objects contain the correct
cached admin user value, we exhaustively determine if there is an admin
user present whenever we unmarshal a Data object.
The Window function will now check before it adjusts the offset whether
it is going to overflow or underflow. If it is going to do either, it
sets the start or end time to MinTime or MaxTime.
The following functions require ordered input but were not guaranteed to
received ordered input:
* `distinct()`
* `sample()`
* `holt_winters()`
* `holt_winters_with_fit()`
* `derivative()`
* `non_negative_derivative()`
* `difference()`
* `moving_average()`
* `elapsed()`
* `cumulative_sum()`
* `top()`
* `bottom()`
These function calls have now been modified to request that their input
be ordered by the query engine. This will prevent the improper output
that could have been caused by multiple series being merged together or
multiple shards being merged together potentially incorrectly when no
time grouping was specified.
Two additional functions were already correct to begin with (so there
are no bugs with these two, but I'm including their names for
completeness).
* `median()`
* `percentile()`
If there were multiple selectors and math, the query engine would
mistakenly think it was the only selector in the query and would not
match their timestamps.
Fixed the query engine to pass whether the selector should be treated as
a selector so queries like `max(value) * 1, min(value) * 1` will match
the timestamps of the result.
Additionally, support unary addition and subtraction for variables,
calls, and parenthesis expressions. Doing `-value` will be the
equivalent of doing `-1 * value` now.
This code was added to address some slow startup issues. It is believed
to be the cause of some segfault panic's that occur at query time when
the underlying MMAP array has been unmapped. The current structure of
code makes this change unnecessary now.
The timezone for a query can now be added to the end with something like
`TZ("America/Los_Angeles")` and it will localize the results of the
query to be in that timezone. The offset will automatically be set to
the offset for that timezone and offsets will automatically adjust for
daylight savings time so grouping by a day will result in a 25 hour day
once a year and a 23 hour day another day of the year.
The automatic adjustment of intervals for timezone offsets changing will
only happen if the group by period is greater than the timezone offset
would be. That means grouping by an hour or less will not be affected by
daylight savings time, but a 2 hour or 1 day interval will be.
The default timezone is UTC and existing queries are unaffected by this
change.
When times are returned as strings (when `epoch=1` is not used), the
results will be returned using the requested timezone format in RFC3339
format.
There is a lot of confusion in the code if the range is [start, end) or
[start, end]. This is not made easier because it is acts one way in some
areas and in another way in some other areas, but it is usually [start,
end]. The `time = ?` syntax assumed that it was [start, end) and added
an extra nanosecond to the end time to accomodate for that, but the
range was actually [start, end] and that caused it to include one extra
nanosecond when it shouldn't have.
This change fixes it so exactly one timestamp is selected when `time = ?`
is used.
This commits adds a caching mechanism to the Data object, such that
when large numbers of users exist in the system, the cost of determining
if there is at least one admin user will be low.
To ensure that previously marshalled Data objects contain the correct
cached admin user value, we exhaustively determine if there is an admin
user present whenever we unmarshal a Data object.
The liner dependency now handles the scenario where the terminal width
is reported as zero. Previously, liner would panic when it tried to
divide by the width (which was zero). Now it falls back onto a dumb
prompt rather than attempting to use a smart prompt and panicking.
When there were multiple series and anything other than the last series
had any null values, the series would start using the first point from
the next series to interpolate points.
Interpolation should not cross between series. Now, the linear fill
checks to make sure the next point is within the same series before
using it to perform interpolation.
When rewriting fields, wildcards within binary expressions were skipped.
This now throws an error whenever it finds a wildcard within a binary
expression in order to prevent the panic that occurs.
Instead of incrementing the `queryOk` statistic with or without the
continuous query running, it will only increment when the query is
actually executed.
Fsyncs to the WAL can cause higher IO with lots of small writes or
slower disks. This reworks the previous wal fsyncing to remove the
extra goroutine and remove the hard-coded 100ms delay. Writes to
the wal still maintain the invariant that they do not return to the
caller until the write is fsync'd.
This also adds a new config options wal-fsync-delay (default 0s)
which can be increased if a delay is desired. This is somewhat useful
for system with slower disks, but the current default works well as
is.
A single line comment will read until the end of a line and is started
with `--` (just like SQL). A multiline comment is with `/* */`. You
cannot nest multiline comments.
max-row-limit was set at 10000 since 1.0, but due to a bug it was
effectively 0 (disabled). 1.2 fixed this bug via #7368, but this
caused a breaking change w/ Grafana and any users upgrading from <1.2
who had not disabled the config manually.