The cursors were previously [start, stop) to be consistent with how flux
requests data, but the underlying storage file store was [start, stop]
because that's how influxql read data. This reverts back the cursor
behavior so that it is now [start, stop] everywhere and the conversion
from [start, stop) to [start, stop] is performed when doing the cursor
request to get the next cursor.
Co-authored-by: Sam Arnold <sarnold@influxdata.com>
This is a backport of #14262 to the 1.x storage engine. The 1.x storage
engine is now the primary engine for open source so when we switched we
regressed to the old behavior.
This also fixes `go generate` for the tsm1 package by running `tmpl`
with `go run` instead of assuming the correct one is installed in the
path.
This commit limits the number of files that can be compacted in
a single group when forcing a full compaction or when a shard
becomes cold. This is to prevent too many files being compacted
at the same time.
Before this, if you deleted everything with `delete where true`
for example, then you would be left with all of your measurements
in the fields index. That would cause ghost fields to reappear
if someone reinserted to the measurement.
This fixes that by making it so the deepest most delete code
checks if the measurement was removed from the index, and if so
cleaning it up out of the fields index.
Additionally, it fixes bugs in that cleanup code where if you had
a measurement like "m1" and "m10", when iterating over the cache
or file store, "m1" would match "m10" due to it only checking the
prefix. This also has it check the character right after the
measurement to be either a comma because tags started, or the first
character of the field separator.
This change makes the digest reader read and discard the manifest if
needed. Not all readers of a digest are interested in the manifest.
This change also makes it a requirement for the writer to write a
manifest because it is a non-optional part of a digest file.
Encode the compressed data at the start internal buffer. This ensures
the returned slice maintains the entire capacity and is available for
subsequent use.
When we pool / reuse string buffers, this will help considerably.
Improvements over previous commit:
```
name old time/op new time/op delta
EncodeStrings/10/batch-8 542ns ± 1% 355ns ± 2% -34.53% (p=0.008 n=5+5)
EncodeStrings/100/batch-8 5.29µs ± 1% 3.58µs ± 2% -32.20% (p=0.008 n=5+5)
EncodeStrings/1000/batch-8 48.6µs ± 0% 36.2µs ± 2% -25.40% (p=0.008 n=5+5)
name old alloc/op new alloc/op delta
EncodeStrings/10/batch-8 704B ± 0% 0B -100.00% (p=0.008 n=5+5)
EncodeStrings/100/batch-8 9.47kB ± 0% 0.00kB -100.00% (p=0.008 n=5+5)
EncodeStrings/1000/batch-8 90.1kB ± 0% 0.0kB -100.00% (p=0.008 n=5+5)
name old allocs/op new allocs/op delta
EncodeStrings/10/batch-8 0.00 0.00 ~ (all equal)
EncodeStrings/100/batch-8 1.00 ± 0% 0.00 -100.00% (p=0.008 n=5+5)
EncodeStrings/1000/batch-8 1.00 ± 0% 0.00 -100.00% (p=0.008 n=5+5)
```
This commit adds a tsm1 function for encoding a batch of booleans into a
provided buffer.
The following benchmarks compare the performance of the existing
iterator based encoders, and the new batch oriented encoders using
randomly generated sets of booleans.
This commit adds a tsm1 function for encoding a batch of strings into a
provided buffer. The new function also shares the buffer between the
input data and the snappy encoded output, reducing allocations.
The following benchmarks compare the performance of the existing
iterator based encoders, and the new batch oriented encoders using
randomly generated strings.
name old time/op new time/op delta
EncodeStrings/10 2.14µs ± 4% 1.42µs ± 4% -33.56% (p=0.000 n=10+10)
EncodeStrings/100 12.7µs ± 3% 10.9µs ± 2% -14.46% (p=0.000 n=10+10)
EncodeStrings/1000 132µs ± 2% 114µs ± 2% -13.88% (p=0.000 n=10+9)
name old alloc/op new alloc/op delta
EncodeStrings/10 657B ± 0% 704B ± 0% +7.15% (p=0.000 n=10+10)
EncodeStrings/100 6.14kB ± 0% 9.47kB ± 0% +54.14% (p=0.000 n=10+10)
EncodeStrings/1000 61.4kB ± 0% 90.1kB ± 0% +46.66% (p=0.000 n=10+10)
name old allocs/op new allocs/op delta
EncodeStrings/10 3.00 ± 0% 0.00 -100.00% (p=0.000 n=10+10)
EncodeStrings/100 3.00 ± 0% 1.00 ± 0% -66.67% (p=0.000 n=10+10)
EncodeStrings/1000 3.00 ± 0% 1.00 ± 0% -66.67% (p=0.000 n=10+10)
This commit adds a tsm1 function for encoding a batch of floats into a
buffer. Further, it replaces the `bitstream` library used in the
existing encoders (and all the current decoders) with inlined bit
expressions within the encoder, significantly reducing the function call
overhead for larger batches.
The following benchmarks compare the performance of the existing
iterator based encoders, and the new batch oriented encoders. They look
at a sequential input slice and a randomly generated input slice.
name old time/op new time/op delta
EncodeFloats/10_seq 1.14µs ± 3% 0.24µs ± 3% -78.94% (p=0.000 n=10+10)
EncodeFloats/10_ran 1.69µs ± 2% 0.21µs ± 3% -87.43% (p=0.000 n=10+10)
EncodeFloats/100_seq 7.07µs ± 1% 1.72µs ± 1% -75.62% (p=0.000 n=7+9)
EncodeFloats/100_ran 15.8µs ± 4% 1.8µs ± 1% -88.60% (p=0.000 n=10+9)
EncodeFloats/1000_seq 50.2µs ± 3% 16.2µs ± 2% -67.66% (p=0.000 n=10+10)
EncodeFloats/1000_ran 174µs ± 2% 16µs ± 2% -90.77% (p=0.000 n=10+10)
name old alloc/op new alloc/op delta
EncodeFloats/10_seq 0.00B 0.00B ~ (all equal)
EncodeFloats/10_ran 0.00B 0.00B ~ (all equal)
EncodeFloats/100_seq 0.00B 0.00B ~ (all equal)
EncodeFloats/100_ran 0.00B 0.00B ~ (all equal)
EncodeFloats/1000_seq 0.00B 0.00B ~ (all equal)
EncodeFloats/1000_ran 0.00B 0.00B ~ (all equal)
name old allocs/op new allocs/op delta
EncodeFloats/10_seq 0.00 0.00 ~ (all equal)
EncodeFloats/10_ran 0.00 0.00 ~ (all equal)
EncodeFloats/100_seq 0.00 0.00 ~ (all equal)
EncodeFloats/100_ran 0.00 0.00 ~ (all equal)
EncodeFloats/1000_seq 0.00 0.00 ~ (all equal)
EncodeFloats/1000_ran 0.00 0.00 ~ (all equal)
If there was an error after the cache has been snapshotted to one or
more TSM files, but before the cache and WAL are cleaned up, then the
cache would be repeatedly snapshotted, generated duplicate level 1 TSM
files.
This commit attempts to clean those files up by removing the temporary
TSM file(s). The snapshot will be retried.
FloatBatchDecodeAll behaves the same as the iterator-based float
decoder, returning an empty slice and no error when passed a buffer
with no encoded float values.
Fixes#10270
Array cursors are enabled for storage RPC calls
tsm1:
* Implemented cursors that utilize Array decoders
storage:
* Abstractions to easily switch to Array cursors
* introduced tmpl from Arrow, which allows existing templates to be
reused with additional command-line properties to control output.
* duplicated suite of ReadFloatBlock tests for ReadFloatArrayBlock
* only the float data type is tested as the Read APIs are generated
from a single template.
* APIs decode an entire byte slice of encoded data into the provided
`dst` slice
* APIs are stateless and in almost all cases avoid any allocations
* Intended to be used future batch-oriented TSM block decode APIs
* duplicated tests from original iterator-based APIs
we were asserting to an *os.File in order to call Sync, but in some
cases the file handle has been wrapped, for example with limiting.
instead, assert to minimal interfaces for the functionality we need
and attempt to add some robustness in the code that creates the
writers by using a stronger interface with a Sync method.
fixes#9991
multiple users have attempted to run influxdb in a docker container
with a windows host and a volume mounted from windows. that causes
problems because it apparently uses samba/cifs which does not
support fsync on directories. this patchset will, if it receives an EINVAL
on directory fsync, as is what appears to happen on samba/cifs, then it
will ignore it. this should help.
fixes#9833.
fixes#9630.
When `influx_inspect buildtsi` is used to create a new `tsi1` index, spaces in measurement names are escaped, so measurement "a b" is changed to "a\ b".
This change modifies `models.ParseKeyBytes()` and `models.ParseName()` to unescape measurement names. `models.ParseKeyBytes()` returns unescaped tag keys, so this seems like the natural place to unescape measurement names.
Also followed `scanMeasurement()` to see what other code could be problematic, and this should be everything (the result of one other use of `scanMeasurement()` is later escaped).
Removed `tsdb.MeasurementFromSeriesKey()`. These methods are exported, so checked for side effects in other InfluxData repositories.