feat: Plan for computing groups (#366)
parent
bfb966b1f1
commit
ee344c3d51
|
@ -1,8 +1,9 @@
|
|||
use delorean_generated_types::wal as wb;
|
||||
use delorean_line_parser::ParsedLine;
|
||||
use delorean_storage::{
|
||||
exec::GroupedSeriesSetPlans, exec::SeriesSetPlan, exec::SeriesSetPlans, exec::StringSet,
|
||||
exec::StringSetPlan, Database, Predicate, TimestampRange,
|
||||
exec::GroupedSeriesSetPlan, exec::GroupedSeriesSetPlans, exec::SeriesSetPlan,
|
||||
exec::SeriesSetPlans, exec::StringSet, exec::StringSetPlan, Database, Predicate,
|
||||
TimestampRange,
|
||||
};
|
||||
use delorean_wal::WalBuilder;
|
||||
use delorean_wal_writer::{start_wal_sync_task, Error as WalWriterError, WalDetails};
|
||||
|
@ -459,11 +460,13 @@ impl Database for Db {
|
|||
|
||||
async fn query_groups(
|
||||
&self,
|
||||
_range: Option<TimestampRange>,
|
||||
_predicate: Option<Predicate>,
|
||||
_group_columns: Vec<String>,
|
||||
range: Option<TimestampRange>,
|
||||
predicate: Option<Predicate>,
|
||||
group_columns: Vec<String>,
|
||||
) -> Result<GroupedSeriesSetPlans, Self::Error> {
|
||||
unimplemented!("query_groups unimplemented as part of write buffer database");
|
||||
let mut visitor = GroupsVisitor::new(predicate, group_columns);
|
||||
self.visit_tables(None, range, &mut visitor).await?;
|
||||
Ok(visitor.plans.into())
|
||||
}
|
||||
|
||||
async fn table_to_arrow(
|
||||
|
@ -941,6 +944,45 @@ impl Visitor for SeriesVisitor {
|
|||
}
|
||||
}
|
||||
|
||||
/// Return DataFusion plans to calculate series that pass the
|
||||
/// specified predicate, grouped according to grouped_columns
|
||||
///
|
||||
/// TODO: Handle _f=<fieldname> and _m=<measurement> predicates
|
||||
/// specially (by filtering entire tables and selecting fields)
|
||||
struct GroupsVisitor {
|
||||
predicate: Option<Predicate>,
|
||||
group_columns: Vec<String>,
|
||||
plans: Vec<GroupedSeriesSetPlan>,
|
||||
}
|
||||
|
||||
impl GroupsVisitor {
|
||||
fn new(predicate: Option<Predicate>, group_columns: Vec<String>) -> Self {
|
||||
Self {
|
||||
predicate,
|
||||
group_columns,
|
||||
plans: Vec::new(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Visitor for GroupsVisitor {
|
||||
fn pre_visit_table(
|
||||
&mut self,
|
||||
table: &Table,
|
||||
partition: &Partition,
|
||||
ts_pred: Option<&TimestampPredicate>,
|
||||
) -> Result<()> {
|
||||
self.plans.push(table.grouped_series_set_plan(
|
||||
self.predicate.as_ref(),
|
||||
ts_pred,
|
||||
&self.group_columns,
|
||||
partition,
|
||||
)?);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
// partition_key returns the partition key for the given line. The key will be the prefix of a
|
||||
// partition name (multiple partitions can exist for each key). It uses the user defined
|
||||
// partitioning rules to construct this key
|
||||
|
|
|
@ -1,5 +1,8 @@
|
|||
use delorean_generated_types::wal as wb;
|
||||
use delorean_storage::{exec::make_schema_pivot, exec::SeriesSetPlan, Predicate, TimestampRange};
|
||||
use delorean_storage::{
|
||||
exec::make_schema_pivot, exec::GroupedSeriesSetPlan, exec::SeriesSetPlan, Predicate,
|
||||
TimestampRange,
|
||||
};
|
||||
|
||||
use std::{collections::HashMap, sync::Arc};
|
||||
|
||||
|
@ -142,6 +145,19 @@ pub enum Error {
|
|||
|
||||
#[snafu(display("Row insert to table {} missing column name", table))]
|
||||
ColumnNameNotInRow { table: u32 },
|
||||
|
||||
#[snafu(display(
|
||||
"Group column '{}' not found in tag columns: {}",
|
||||
column_name,
|
||||
all_tag_column_names
|
||||
))]
|
||||
GroupColumnNotFound {
|
||||
column_name: String,
|
||||
all_tag_column_names: String,
|
||||
},
|
||||
|
||||
#[snafu(display("Duplicate group column '{}'", column_name))]
|
||||
DuplicateGroupColumn { column_name: String },
|
||||
}
|
||||
pub type Result<T, E = Error> = std::result::Result<T, E>;
|
||||
|
||||
|
@ -160,6 +176,8 @@ pub struct Table {
|
|||
pub columns: Vec<Column>,
|
||||
}
|
||||
|
||||
type ArcStringVec = Vec<Arc<String>>;
|
||||
|
||||
impl Table {
|
||||
pub fn new(id: u32) -> Self {
|
||||
Self {
|
||||
|
@ -427,17 +445,27 @@ impl Table {
|
|||
/// The data is sorted on tag_col1, tag_col2, ...) so that all
|
||||
/// rows for a particular series (groups where all tags are the
|
||||
/// same) occur together in the plan
|
||||
///
|
||||
pub fn series_set_plan(
|
||||
&self,
|
||||
predicate: Option<&Predicate>,
|
||||
timestamp_predicate: Option<&TimestampPredicate>,
|
||||
partition: &Partition,
|
||||
) -> Result<SeriesSetPlan> {
|
||||
self.series_set_plan_impl(predicate, timestamp_predicate, None, partition)
|
||||
}
|
||||
|
||||
/// Creates the plans for computing series set, pulling prefix_columns, if any, as a prefix of the ordering
|
||||
/// The created plan looks like:
|
||||
///
|
||||
/// Projection (select the columns columns needed)
|
||||
/// Order by (tag_columns, timestamp_column)
|
||||
/// Filter(predicate)
|
||||
/// InMemoryScan
|
||||
pub fn series_set_plan(
|
||||
pub fn series_set_plan_impl(
|
||||
&self,
|
||||
predicate: Option<&Predicate>,
|
||||
timestamp_predicate: Option<&TimestampPredicate>,
|
||||
prefix_columns: Option<&[String]>,
|
||||
partition: &Partition,
|
||||
) -> Result<SeriesSetPlan> {
|
||||
// Note we also need to add a timestamp predicate to this
|
||||
|
@ -461,34 +489,13 @@ impl Table {
|
|||
.to_string();
|
||||
|
||||
let table_name = Arc::new(table_name);
|
||||
let (mut tag_columns, field_columns) = self.tag_and_field_column_names(partition)?;
|
||||
|
||||
let mut field_columns = Vec::with_capacity(self.column_id_to_index.len());
|
||||
let mut tag_columns = Vec::with_capacity(self.column_id_to_index.len());
|
||||
|
||||
for (&column_id, &column_index) in &self.column_id_to_index {
|
||||
let column_name = partition
|
||||
.dictionary
|
||||
.lookup_id(column_id)
|
||||
.expect("Find column name in dictionary");
|
||||
|
||||
if column_name != TIME_COLUMN_NAME {
|
||||
let column_name = Arc::new(column_name.to_string());
|
||||
|
||||
match self.columns[column_index] {
|
||||
Column::Tag(_) => tag_columns.push(column_name),
|
||||
_ => field_columns.push(column_name),
|
||||
}
|
||||
}
|
||||
// reorder tag_columns to have the prefix columns, if requested
|
||||
if let Some(prefix_columns) = prefix_columns {
|
||||
tag_columns = reorder_prefix(prefix_columns, tag_columns)?;
|
||||
}
|
||||
|
||||
// tag columns are always sorted by name (aka sorted by tag
|
||||
// key) in the output schema, so ensure the columns are sorted
|
||||
// (the select exprs)
|
||||
tag_columns.sort();
|
||||
|
||||
// Sort the field columns too so that the output always comes out in a predictable order
|
||||
field_columns.sort();
|
||||
|
||||
// TODO avoid materializing all the columns here (ideally
|
||||
// DataFusion can prune them out)
|
||||
let data = self.all_to_arrow(partition)?;
|
||||
|
@ -538,6 +545,82 @@ impl Table {
|
|||
})
|
||||
}
|
||||
|
||||
/// Creates a GroupedSeriesSet plan that produces an output table with rows that match the predicate
|
||||
///
|
||||
/// The output looks like:
|
||||
/// (group_tag_column1, group_tag_column2, ... tag_col1, tag_col2, ... field1, field2, ... timestamp)
|
||||
///
|
||||
/// The order of the tag_columns is ordered by name.
|
||||
///
|
||||
/// The data is sorted on tag_col1, tag_col2, ...) so that all
|
||||
/// rows for a particular series (groups where all tags are the
|
||||
/// same) occur together in the plan
|
||||
///
|
||||
/// The created plan looks like:
|
||||
///
|
||||
/// Projection (select the columns columns needed)
|
||||
/// Order by (tag_columns, timestamp_column)
|
||||
/// Filter(predicate)
|
||||
/// InMemoryScan
|
||||
pub fn grouped_series_set_plan(
|
||||
&self,
|
||||
predicate: Option<&Predicate>,
|
||||
timestamp_predicate: Option<&TimestampPredicate>,
|
||||
group_columns: &[String],
|
||||
partition: &Partition,
|
||||
) -> Result<GroupedSeriesSetPlan> {
|
||||
let series_set_plan = self.series_set_plan_impl(
|
||||
predicate,
|
||||
timestamp_predicate,
|
||||
Some(&group_columns),
|
||||
partition,
|
||||
)?;
|
||||
let num_prefix_tag_group_columns = group_columns.len();
|
||||
|
||||
Ok(GroupedSeriesSetPlan {
|
||||
series_set_plan,
|
||||
num_prefix_tag_group_columns,
|
||||
})
|
||||
}
|
||||
|
||||
// Returns (tag_columns, field_columns) vectors with the names of
|
||||
// all tag and field columns, respectively. The vectors are sorted
|
||||
// by name.
|
||||
fn tag_and_field_column_names(
|
||||
&self,
|
||||
partition: &Partition,
|
||||
) -> Result<(ArcStringVec, ArcStringVec)> {
|
||||
let mut tag_columns = Vec::with_capacity(self.column_id_to_index.len());
|
||||
let mut field_columns = Vec::with_capacity(self.column_id_to_index.len());
|
||||
|
||||
for (&column_id, &column_index) in &self.column_id_to_index {
|
||||
let column_name = partition
|
||||
.dictionary
|
||||
.lookup_id(column_id)
|
||||
.expect("Find column name in dictionary");
|
||||
|
||||
if column_name != TIME_COLUMN_NAME {
|
||||
let column_name = Arc::new(column_name.to_string());
|
||||
|
||||
match self.columns[column_index] {
|
||||
Column::Tag(_) => tag_columns.push(column_name),
|
||||
_ => field_columns.push(column_name),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// tag columns are always sorted by name (aka sorted by tag
|
||||
// key) in the output schema, so ensure the columns are sorted
|
||||
// (the select exprs)
|
||||
tag_columns.sort();
|
||||
|
||||
// Sort the field columns too so that the output always comes
|
||||
// out in a predictable order
|
||||
field_columns.sort();
|
||||
|
||||
Ok((tag_columns, field_columns))
|
||||
}
|
||||
|
||||
/// Creates a DataFusion predicate of the form:
|
||||
///
|
||||
/// `expr AND (range.start <= time and time < range.end)`
|
||||
|
@ -768,6 +851,67 @@ impl Table {
|
|||
}
|
||||
}
|
||||
|
||||
/// Reorders tag_columns so that its prefix matches exactly
|
||||
/// prefix_columns. Returns an error if there are duplicates, or other
|
||||
/// untoward inputs
|
||||
fn reorder_prefix(
|
||||
prefix_columns: &[String],
|
||||
tag_columns: Vec<Arc<String>>,
|
||||
) -> Result<Vec<Arc<String>>> {
|
||||
// tag_used_set[i[ is true if we have used the value in tag_columns[i]
|
||||
let mut tag_used_set = vec![false; tag_columns.len()];
|
||||
|
||||
// Note that this is an O(N^2) algorithm. We are assuming the
|
||||
// number of tag columns is reasonably small
|
||||
|
||||
// map from prefix_column[idx] -> index in tag_columns
|
||||
let prefix_map = prefix_columns
|
||||
.iter()
|
||||
.map(|pc| {
|
||||
let found_location = tag_columns
|
||||
.iter()
|
||||
.enumerate()
|
||||
.find(|(_, c)| pc == c.as_ref());
|
||||
|
||||
if let Some((index, _)) = found_location {
|
||||
if tag_used_set[index] {
|
||||
DuplicateGroupColumn { column_name: pc }.fail()
|
||||
} else {
|
||||
tag_used_set[index] = true;
|
||||
Ok(index)
|
||||
}
|
||||
} else {
|
||||
GroupColumnNotFound {
|
||||
column_name: pc,
|
||||
all_tag_column_names: tag_columns
|
||||
.iter()
|
||||
.map(|s| s.as_ref() as &str)
|
||||
.collect::<Vec<_>>()
|
||||
.as_slice()
|
||||
.join(", "),
|
||||
}
|
||||
.fail()
|
||||
}
|
||||
})
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
|
||||
let mut new_tag_columns = prefix_map
|
||||
.iter()
|
||||
.map(|&i| tag_columns[i].clone())
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
new_tag_columns.extend(tag_columns.into_iter().enumerate().filter_map(|(i, c)| {
|
||||
// already used in prefix
|
||||
if tag_used_set[i] {
|
||||
None
|
||||
} else {
|
||||
Some(c)
|
||||
}
|
||||
}));
|
||||
|
||||
Ok(new_tag_columns)
|
||||
}
|
||||
|
||||
/// Traits to help creating DataFuson expressions from strings
|
||||
trait IntoExpr {
|
||||
/// Creates a DataFuson expr
|
||||
|
@ -981,6 +1125,148 @@ mod tests {
|
|||
assert_eq!(expected, results, "expected output");
|
||||
}
|
||||
|
||||
#[tokio::test(threaded_scheduler)]
|
||||
async fn test_grouped_series_set_plan() {
|
||||
// test that filters are applied reasonably
|
||||
|
||||
// setup a test table
|
||||
let mut partition = Partition::new("dummy_partition_key");
|
||||
let dictionary = &mut partition.dictionary;
|
||||
let mut table = Table::new(dictionary.lookup_value_or_insert("table_name"));
|
||||
|
||||
let lp_lines = vec![
|
||||
"h2o,state=MA,city=Boston temp=70.4 100",
|
||||
"h2o,state=MA,city=Boston temp=72.4 250",
|
||||
"h2o,state=CA,city=LA temp=90.0 200",
|
||||
"h2o,state=CA,city=LA temp=90.0 350",
|
||||
];
|
||||
|
||||
write_lines_to_table(&mut table, dictionary, lp_lines);
|
||||
|
||||
let expr = Expr::BinaryExpr {
|
||||
left: Box::new(Expr::Column("city".into())),
|
||||
op: Operator::Eq,
|
||||
right: Box::new(Expr::Literal(ScalarValue::Utf8(Some("LA".into())))),
|
||||
};
|
||||
let predicate = Some(Predicate { expr });
|
||||
|
||||
let range = Some(TimestampRange::new(190, 210));
|
||||
let timestamp_predicate = partition
|
||||
.make_timestamp_predicate(range)
|
||||
.expect("Made a timestamp predicate");
|
||||
|
||||
let group_columns = vec![String::from("state")];
|
||||
let grouped_series_set_plan = table
|
||||
.grouped_series_set_plan(
|
||||
predicate.as_ref(),
|
||||
timestamp_predicate.as_ref(),
|
||||
&group_columns,
|
||||
&partition,
|
||||
)
|
||||
.expect("creating the grouped_series set plan");
|
||||
|
||||
assert_eq!(grouped_series_set_plan.num_prefix_tag_group_columns, 1);
|
||||
|
||||
// run the created plan, ensuring the output is as expected
|
||||
let results = run_plan(grouped_series_set_plan.series_set_plan.plan).await;
|
||||
|
||||
let expected = vec![
|
||||
"+-------+------+------+------+",
|
||||
"| state | city | temp | time |",
|
||||
"+-------+------+------+------+",
|
||||
"| CA | LA | 90 | 200 |",
|
||||
"+-------+------+------+------+",
|
||||
];
|
||||
|
||||
assert_eq!(expected, results, "expected output");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_reorder_prefix() {
|
||||
assert_eq!(reorder_prefix_ok(&[], &[]), &[] as &[&str]);
|
||||
|
||||
assert_eq!(reorder_prefix_ok(&[], &["one"]), &["one"]);
|
||||
assert_eq!(reorder_prefix_ok(&["one"], &["one"]), &["one"]);
|
||||
|
||||
assert_eq!(reorder_prefix_ok(&[], &["one", "two"]), &["one", "two"]);
|
||||
assert_eq!(
|
||||
reorder_prefix_ok(&["one"], &["one", "two"]),
|
||||
&["one", "two"]
|
||||
);
|
||||
assert_eq!(
|
||||
reorder_prefix_ok(&["two"], &["one", "two"]),
|
||||
&["two", "one"]
|
||||
);
|
||||
assert_eq!(
|
||||
reorder_prefix_ok(&["two", "one"], &["one", "two"]),
|
||||
&["two", "one"]
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
reorder_prefix_ok(&[], &["one", "two", "three"]),
|
||||
&["one", "two", "three"]
|
||||
);
|
||||
assert_eq!(
|
||||
reorder_prefix_ok(&["one"], &["one", "two", "three"]),
|
||||
&["one", "two", "three"]
|
||||
);
|
||||
assert_eq!(
|
||||
reorder_prefix_ok(&["two"], &["one", "two", "three"]),
|
||||
&["two", "one", "three"]
|
||||
);
|
||||
assert_eq!(
|
||||
reorder_prefix_ok(&["three", "one"], &["one", "two", "three"]),
|
||||
&["three", "one", "two"]
|
||||
);
|
||||
|
||||
// errors
|
||||
assert_eq!(
|
||||
reorder_prefix_err(&["one"], &[]),
|
||||
"Group column \'one\' not found in tag columns: "
|
||||
);
|
||||
assert_eq!(
|
||||
reorder_prefix_err(&["one"], &["two", "three"]),
|
||||
"Group column \'one\' not found in tag columns: two, three"
|
||||
);
|
||||
assert_eq!(
|
||||
reorder_prefix_err(&["two", "one", "two"], &["one", "two"]),
|
||||
"Duplicate group column \'two\'"
|
||||
);
|
||||
}
|
||||
|
||||
fn reorder_prefix_ok(prefix: &[&str], table_columns: &[&str]) -> Vec<String> {
|
||||
let prefix = prefix.iter().map(|s| s.to_string()).collect::<Vec<_>>();
|
||||
let table_columns =
|
||||
Arc::try_unwrap(str_vec_to_arc_vec(table_columns)).expect("unwrap the arc");
|
||||
|
||||
let res = reorder_prefix(&prefix, table_columns);
|
||||
let message = format!("Expected OK, got {:?}", res);
|
||||
let res = res.expect(&message);
|
||||
|
||||
res.into_iter()
|
||||
.map(|a| Arc::try_unwrap(a).expect("unwrapping arc"))
|
||||
.collect()
|
||||
}
|
||||
|
||||
// returns the error string or panics if `reorder_prefix` doesn't return an error
|
||||
fn reorder_prefix_err(prefix: &[&str], table_columns: &[&str]) -> String {
|
||||
let prefix = prefix.iter().map(|s| s.to_string()).collect::<Vec<_>>();
|
||||
let table_columns =
|
||||
Arc::try_unwrap(str_vec_to_arc_vec(table_columns)).expect("unwrap the arc");
|
||||
|
||||
let res = reorder_prefix(&prefix, table_columns);
|
||||
|
||||
match res {
|
||||
Ok(r) => {
|
||||
panic!(
|
||||
"Expected error result from reorder_prefix_err, but was OK: '{:?}'",
|
||||
r
|
||||
);
|
||||
}
|
||||
Err(e) => format!("{}", e),
|
||||
}
|
||||
}
|
||||
|
||||
/// Runs `plan` and returns the output as petty-formatted array of strings
|
||||
async fn run_plan(plan: LogicalPlan) -> Vec<String> {
|
||||
// run the created plan, ensuring the output is as expected
|
||||
|
|
Loading…
Reference in New Issue