Default concurrent compactions to 50% of available cores

pull/8856/head
Jason Wilder 2017-09-20 15:27:34 -06:00
parent deef0c5649
commit db204f3eb7
7 changed files with 100 additions and 47 deletions

View File

@ -88,7 +88,8 @@
# compact-full-write-cold-duration = "4h"
# The maximum number of concurrent full and level compactions that can run at one time. A
# value of 0 results in runtime.GOMAXPROCS(0) used at runtime. This setting does not apply
# value of 0 results in 50% of runtime.GOMAXPROCS(0) used at runtime. Any number greater
# than 0 limits compactions to that value. This setting does not apply
# to cache snapshotting.
# max-concurrent-compactions = 0
@ -358,10 +359,10 @@
# UDP Read buffer size, 0 means OS default. UDP listener will fail if set above OS max.
# read-buffer = 0
# Multi-value plugins can be handled two ways.
# Multi-value plugins can be handled two ways.
# "split" will parse and store the multi-value plugin data into separate measurements
# "join" will parse and store the multi-value plugin as a single multi-value measurement.
# "split" is the default behavior for backward compatability with previous versions of influxdb.
# "join" will parse and store the multi-value plugin as a single multi-value measurement.
# "split" is the default behavior for backward compatability with previous versions of influxdb.
# parse-multivalue-plugin = "split"
###
### [opentsdb]

View File

@ -10,10 +10,27 @@ func NewFixed(limit int) Fixed {
return make(Fixed, limit)
}
// Idle returns true if the limiter has all its capacity is available.
func (t Fixed) Idle() bool {
return len(t) == cap(t)
}
// TryTake attempts to take a token and return true if successful, otherwise returns false.
func (t Fixed) TryTake() bool {
select {
case t <- struct{}{}:
return true
default:
return false
}
}
// Take attempts to take a token and blocks until one is available.
func (t Fixed) Take() {
t <- struct{}{}
}
// Release releases a token back to the limiter.
func (t Fixed) Release() {
<-t
}

View File

@ -49,7 +49,7 @@ const (
DefaultMaxValuesPerTag = 100000
// DefaultMaxConcurrentCompactions is the maximum number of concurrent full and level compactions
// that can run at one time. A value of results in runtime.GOMAXPROCS(0) used at runtime.
// that can run at one time. A value of 0 results in 50% of runtime.GOMAXPROCS(0) used at runtime.
DefaultMaxConcurrentCompactions = 0
)

View File

@ -144,11 +144,13 @@ func NewEngine(id uint64, i Index, database, path string, walPath string, option
// EngineOptions represents the options used to initialize the engine.
type EngineOptions struct {
EngineVersion string
IndexVersion string
ShardID uint64
InmemIndex interface{} // shared in-memory index
CompactionLimiter limiter.Fixed
EngineVersion string
IndexVersion string
ShardID uint64
InmemIndex interface{} // shared in-memory index
HiPriCompactionLimiter limiter.Fixed
LoPriCompactionLimiter limiter.Fixed
Config Config
}

View File

@ -230,7 +230,7 @@ func (c *DefaultPlanner) PlanLevel(level int) []CompactionGroup {
// Each compaction group should run against 4 generations. For level 1, since these
// can get created much more quickly, bump the grouping to 8 to keep file counts lower.
groupSize := 4
if level == 1 {
if level == 1 || level == 3 {
groupSize = 8
}

View File

@ -137,8 +137,10 @@ type Engine struct {
stats *EngineStatistics
// The limiter for concurrent compactions
compactionLimiter limiter.Fixed
// Limiters for concurrent compactions. The low priority limiter is for level 3 and 4
// compactions. The high priority is for level 1 and 2 compactions.
loPriCompactionLimiter limiter.Fixed
hiPriCompactionLimiter limiter.Fixed
}
// NewEngine returns a new instance of Engine.
@ -176,8 +178,9 @@ func NewEngine(id uint64, idx tsdb.Index, database, path string, walPath string,
CacheFlushMemorySizeThreshold: opt.Config.CacheSnapshotMemorySize,
CacheFlushWriteColdDuration: time.Duration(opt.Config.CacheSnapshotWriteColdDuration),
enableCompactionsOnOpen: true,
stats: &EngineStatistics{},
compactionLimiter: opt.CompactionLimiter,
stats: &EngineStatistics{},
loPriCompactionLimiter: opt.LoPriCompactionLimiter,
hiPriCompactionLimiter: opt.HiPriCompactionLimiter,
}
// Attach fieldset to index.
@ -1346,46 +1349,33 @@ func (e *Engine) onFileStoreReplace(newFiles []TSMFile) {
type compactionStrategy struct {
compactionGroups []CompactionGroup
// concurrency determines how many compactions groups will be started
// concurrently. These groups may be limited by the global limiter if
// enabled.
concurrency int
fast bool
description string
level int
durationStat *int64
activeStat *int64
successStat *int64
errorStat *int64
logger zap.Logger
compactor *Compactor
fileStore *FileStore
limiter limiter.Fixed
engine *Engine
logger zap.Logger
compactor *Compactor
fileStore *FileStore
loPriLimiter limiter.Fixed
hiPriLimiter limiter.Fixed
engine *Engine
}
// Apply concurrently compacts all the groups in a compaction strategy.
func (s *compactionStrategy) Apply() {
start := time.Now()
// cap concurrent compaction groups to no more than 4 at a time.
concurrency := s.concurrency
if concurrency == 0 {
concurrency = 4
}
throttle := limiter.NewFixed(concurrency)
var wg sync.WaitGroup
for i := range s.compactionGroups {
wg.Add(1)
go func(groupNum int) {
defer wg.Done()
// limit concurrent compaction groups
throttle.Take()
defer throttle.Release()
s.compactGroup(groupNum)
}(i)
}
@ -1396,10 +1386,31 @@ func (s *compactionStrategy) Apply() {
// compactGroup executes the compaction strategy against a single CompactionGroup.
func (s *compactionStrategy) compactGroup(groupNum int) {
// Limit concurrent compactions if we have a limiter
if cap(s.limiter) > 0 {
s.limiter.Take()
defer s.limiter.Release()
// Level 1 and 2 are high priority and have a larger slice of the pool. If all
// the high priority capacity is used up, they can steal from the low priority
// pool as well if there is capacity. Otherwise, it wait on the high priority
// limiter until an running compaction completes. Level 3 and 4 are low priority
// as they are generally larger compactions and more expensive to run. They can
// steal a little from the high priority limiter if there is no high priority work.
switch s.level {
case 1, 2:
if s.hiPriLimiter.TryTake() {
defer s.hiPriLimiter.Release()
} else if s.loPriLimiter.TryTake() {
defer s.loPriLimiter.Release()
} else {
s.hiPriLimiter.Take()
defer s.hiPriLimiter.Release()
}
default:
if s.loPriLimiter.TryTake() {
defer s.loPriLimiter.Release()
} else if s.hiPriLimiter.Idle() && s.hiPriLimiter.TryTake() {
defer s.hiPriLimiter.Release()
} else {
s.loPriLimiter.Take()
defer s.loPriLimiter.Release()
}
}
group := s.compactionGroups[groupNum]
@ -1462,14 +1473,15 @@ func (e *Engine) levelCompactionStrategy(fast bool, level int) *compactionStrate
}
return &compactionStrategy{
concurrency: 4,
compactionGroups: compactionGroups,
logger: e.logger,
fileStore: e.FileStore,
compactor: e.Compactor,
fast: fast,
limiter: e.compactionLimiter,
loPriLimiter: e.loPriCompactionLimiter,
hiPriLimiter: e.hiPriCompactionLimiter,
engine: e,
level: level,
description: fmt.Sprintf("level %d", level),
activeStat: &e.stats.TSMCompactionsActive[level-1],
@ -1495,14 +1507,15 @@ func (e *Engine) fullCompactionStrategy() *compactionStrategy {
}
s := &compactionStrategy{
concurrency: 1,
compactionGroups: compactionGroups,
logger: e.logger,
fileStore: e.FileStore,
compactor: e.Compactor,
fast: optimize,
limiter: e.compactionLimiter,
loPriLimiter: e.loPriCompactionLimiter,
hiPriLimiter: e.hiPriCompactionLimiter,
engine: e,
level: 4,
}
if optimize {

View File

@ -159,15 +159,35 @@ func (s *Store) loadShards() error {
err error
}
t := limiter.NewFixed(runtime.GOMAXPROCS(0))
// Setup a shared limiter for compactions
lim := s.EngineOptions.Config.MaxConcurrentCompactions
if lim == 0 {
lim = runtime.GOMAXPROCS(0) / 2 // Default to 50% of cores for compactions
if lim < 1 {
lim = 1
}
}
// Don't allow more compactions to run than cores.
if lim > runtime.GOMAXPROCS(0) {
lim = runtime.GOMAXPROCS(0)
}
s.EngineOptions.CompactionLimiter = limiter.NewFixed(lim)
// If only one compacttion can run at time, use the same limiter for high and low
// priority work.
if lim == 1 {
s.EngineOptions.HiPriCompactionLimiter = limiter.NewFixed(1)
s.EngineOptions.LoPriCompactionLimiter = s.EngineOptions.HiPriCompactionLimiter
} else {
// Split the available high and low priority limiters between the available cores.
// The high priority work can steal from low priority at times so it can use the
// full limit if there is pending work. The low priority is capped at half the
// limit.
s.EngineOptions.HiPriCompactionLimiter = limiter.NewFixed(lim/2 + lim%2)
s.EngineOptions.LoPriCompactionLimiter = limiter.NewFixed(lim / 2)
}
t := limiter.NewFixed(runtime.GOMAXPROCS(0))
resC := make(chan *res)
var n int