feat: Try to prune ingester partitions by partition key

This is hacktastic.
pull/24376/head
Carol (Nichols || Goulding) 2023-06-30 14:05:17 -04:00 committed by Dom Dwyer
parent da34eb7b35
commit 8ebf390d9c
No known key found for this signature in database
GPG Key ID: E4C40DBD9157879A
5 changed files with 159 additions and 10 deletions

1
Cargo.lock generated
View File

@ -2628,6 +2628,7 @@ dependencies = [
"parquet_file",
"paste",
"pin-project",
"predicate",
"prost",
"rand",
"schema",

View File

@ -32,6 +32,7 @@ once_cell = "1.18"
parking_lot = "0.12.1"
parquet_file = { version = "0.1.0", path = "../parquet_file" }
pin-project = "1.1.2"
predicate = { version = "0.1.0", path = "../predicate" }
prost = { version = "0.11.9", default-features = false, features = ["std"] }
rand = "0.8.5"
schema = { version = "0.1.0", path = "../schema" }

View File

@ -2,12 +2,18 @@
pub(crate) mod metadata_resolver;
use std::{fmt::Debug, sync::Arc};
use std::{collections::HashMap, fmt::Debug, sync::Arc};
use async_trait::async_trait;
use data_types::{
partition_template::TablePartitionTemplateOverride, NamespaceId, PartitionKey, SequenceNumber,
Table, TableId,
partition_template::{build_column_values, ColumnValue, TablePartitionTemplateOverride},
NamespaceId, PartitionKey, SequenceNumber, Table, TableId,
};
use datafusion::scalar::ScalarValue;
use iox_query::{
chunk_statistics::{create_chunk_statistics, ColumnRange},
pruning::keep_after_pruning,
QueryChunk,
};
use mutable_batch::MutableBatch;
use parking_lot::Mutex;
@ -247,7 +253,7 @@ where
table_id: TableId,
columns: Vec<String>,
span: Option<Span>,
_predicate: Option<Predicate>,
predicate: Option<Predicate>,
) -> Result<Self::Response, QueryError> {
assert_eq!(self.table_id, table_id, "buffer tree index inconsistency");
assert_eq!(
@ -255,26 +261,118 @@ where
"buffer tree index inconsistency"
);
let table_partition_template = self.catalog_table.get().await.partition_template;
// Gather the partition data from all of the partitions in this table.
let span = SpanRecorder::new(span);
let partitions = self.partitions().into_iter().map(move |p| {
let mut span = span.child("partition read");
let (id, hash_id, completed_persistence_count, data) = {
let (id, hash_id, completed_persistence_count, data, partition_key) = {
let mut p = p.lock();
(
p.partition_id(),
p.partition_hash_id().cloned(),
p.completed_persistence_count(),
p.get_query_data(),
p.partition_key().clone(),
)
};
let ret = match data {
Some(data) => {
// TODO(savage): Apply predicate here through the projection?
assert_eq!(id, data.partition_id());
let data = Arc::new(data);
if let Some(predicate) = &predicate {
// Filter using the partition key
let column_ranges = Arc::new(
build_column_values(&table_partition_template, partition_key.inner())
.filter_map(|(col, val)| {
let range = match val {
ColumnValue::Identity(s) => {
let s = Arc::new(ScalarValue::from(s.as_ref()));
ColumnRange {
min_value: Arc::clone(&s),
max_value: s,
}
}
ColumnValue::Prefix(p) => {
if p.is_empty() {
// full range => value is useless
return None;
}
// If the partition only has a prefix of the tag value (it was truncated) then form a conservative
// range:
//
//
// # Minimum
// Use the prefix itself.
//
// Note that the minimum is inclusive.
//
// All values in the partition are either:
// - identical to the prefix, in which case they are included by the inclusive minimum
// - have the form `"<prefix><s>"`, and it holds that `"<prefix><s>" > "<prefix>"` for all
// strings `"<s>"`.
//
//
// # Maximum
// Use `"<prefix_excluding_last_char><char::max>"`.
//
// Note that the maximum is inclusive.
//
// All strings in this partition must be smaller than this constructed maximum, because
// string comparison is front-to-back and the `"<prefix_excluding_last_char><char::max>" > "<prefix>"`.
let min_value = Arc::new(ScalarValue::from(p.as_ref()));
let mut chars = p.as_ref().chars().collect::<Vec<_>>();
*chars
.last_mut()
.expect("checked that prefix is not empty") =
std::char::MAX;
let max_value = Arc::new(ScalarValue::from(
chars.into_iter().collect::<String>().as_str(),
));
ColumnRange {
min_value,
max_value,
}
}
};
Some((Arc::from(col), range))
})
.collect::<HashMap<_, _>>(),
);
let chunk_statistics = Arc::new(create_chunk_statistics(
data.num_rows(),
data.schema(),
data.ts_min_max(),
&column_ranges,
));
if !keep_after_pruning(
data.schema(),
chunk_statistics,
data.schema().as_arrow(),
predicate,
)
.expect("TODO FIX THIS")
{
return PartitionResponse::new(
vec![],
id,
hash_id,
completed_persistence_count,
);
}
}
// Project the data if necessary
let columns = columns.iter().map(String::as_str).collect::<Vec<_>>();
let selection = if columns.is_empty() {

View File

@ -5,7 +5,7 @@ use std::{any::Any, sync::Arc};
use arrow::record_batch::RecordBatch;
use arrow_util::util::ensure_schema;
use data_types::{ChunkId, ChunkOrder, PartitionId};
use data_types::{ChunkId, ChunkOrder, PartitionId, TimestampMinMax};
use datafusion::physical_plan::Statistics;
use iox_query::{
util::{compute_timenanosecond_min_max, create_basic_summary},
@ -105,16 +105,26 @@ impl QueryAdaptor {
pub(crate) fn partition_id(&self) -> PartitionId {
self.partition_id
}
/// Number of rows, useful for building stats
pub(crate) fn num_rows(&self) -> u64 {
self.data.iter().map(|b| b.num_rows()).sum::<usize>() as u64
}
/// Time range, useful for building stats
pub(crate) fn ts_min_max(&self) -> TimestampMinMax {
compute_timenanosecond_min_max(self.data.iter().map(|b| b.as_ref()))
.expect("Should have time range")
}
}
impl QueryChunk for QueryAdaptor {
fn stats(&self) -> Arc<Statistics> {
Arc::clone(self.stats.get_or_init(|| {
let ts_min_max = compute_timenanosecond_min_max(self.data.iter().map(|b| b.as_ref()))
.expect("Should have time range");
let ts_min_max = self.ts_min_max();
Arc::new(create_basic_summary(
self.data.iter().map(|b| b.num_rows()).sum::<usize>() as u64,
self.num_rows(),
self.schema(),
ts_min_max,
))

View File

@ -86,6 +86,45 @@ pub fn prune_chunks(
prune_summaries(table_schema, &summaries, predicate)
}
/// Check one set of statistics against the predicate
pub fn keep_after_pruning(
table_schema: &Schema,
chunk_statistics: Arc<Statistics>,
chunk_schema: SchemaRef,
predicate: &Predicate,
) -> Result<bool, NotPrunedReason> {
let filter_expr = match predicate.filter_expr() {
Some(expr) => expr,
None => {
return Ok(true);
}
};
trace!(%filter_expr, "Filter_expr of pruning chunk");
let props = ExecutionProps::new();
let pruning_predicate =
match create_pruning_predicate(&props, &filter_expr, &table_schema.as_arrow()) {
Ok(p) => p,
Err(e) => {
warn!(%e, ?filter_expr, "Cannot create pruning predicate");
return Err(NotPrunedReason::CanNotCreatePruningPredicate);
}
};
let statistics = ChunkPruningStatistics {
table_schema,
summaries: &[(chunk_statistics, chunk_schema)],
};
let result = match pruning_predicate.prune(&statistics) {
Ok(results) => results.into_iter().next().expect("TODO FIX THIS"),
Err(e) => {
warn!(%e, ?filter_expr, "DataFusion pruning failed");
return Err(NotPrunedReason::DataFusionPruningFailed);
}
};
Ok(result)
}
/// Given a `Vec` of pruning summaries, return a `Vec<bool>` where `false` indicates that the
/// predicate can be proven to evaluate to `false` for every single row.
pub fn prune_summaries(