Merge branch 'main' into savage/await-enqueue-rotation-returned-receiver-during-shutdown

pull/24376/head
kodiakhq[bot] 2023-07-24 09:17:55 +00:00 committed by GitHub
commit 0ed4e8509b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
20 changed files with 1744 additions and 239 deletions

16
Cargo.lock generated
View File

@ -855,9 +855,9 @@ dependencies = [
[[package]]
name = "clap"
version = "4.3.17"
version = "4.3.19"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5b0827b011f6f8ab38590295339817b0d26f344aa4932c3ced71b45b0c54b4a9"
checksum = "5fd304a20bff958a57f04c4e96a2e7594cc4490a0e809cbd48bb6437edaa452d"
dependencies = [
"clap_builder",
"clap_derive",
@ -887,9 +887,9 @@ dependencies = [
[[package]]
name = "clap_builder"
version = "4.3.17"
version = "4.3.19"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9441b403be87be858db6a23edb493e7f694761acdc3343d5a0fcaafd304cbc9e"
checksum = "01c6a3f08f1fe5662a35cfe393aec09c4df95f60ee93b7556505260f75eee9e1"
dependencies = [
"anstream",
"anstyle",
@ -5683,9 +5683,9 @@ checksum = "d3543ca0810e71767052bdcdd5653f23998b192642a22c5164bfa6581e40a4a2"
[[package]]
name = "sysinfo"
version = "0.29.5"
version = "0.29.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6b949f01f9c23823744b71e0060472ecbde578ef68cc2a9e46d114efd77c3034"
checksum = "c7cb97a5a85a136d84e75d5c3cf89655090602efb1be0d8d5337b7e386af2908"
dependencies = [
"cfg-if",
"core-foundation-sys",
@ -6090,9 +6090,9 @@ dependencies = [
[[package]]
name = "tower-http"
version = "0.4.2"
version = "0.4.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7ac8060a61f8758a61562f6fb53ba3cbe1ca906f001df2e53cccddcdbee91e7c"
checksum = "55ae70283aba8d2a8b411c695c437fe25b8b5e44e23e780662002fc72fb47a82"
dependencies = [
"bitflags 2.3.3",
"bytes",

View File

@ -105,8 +105,6 @@ where
L: Loader<K = Vec<K>, Extra = Vec<Extra>, V = Vec<V>>,
{
async fn flush(&self) {
trace!("flushing batch loader");
let pending: Vec<_> = {
let mut pending = self.inner.pending.lock();
std::mem::take(pending.as_mut())
@ -115,6 +113,8 @@ where
if pending.is_empty() {
return;
}
trace!(n_pending = pending.len(), "flush batch loader",);
let job_id = self.inner.job_id_counter.fetch_add(1, Ordering::SeqCst);
let handle_recv = CancellationSafeFutureReceiver::default();
@ -221,6 +221,15 @@ where
if !pending.is_empty() {
self.flush().await;
// prevent hot-looping:
// It seems that in some cases the underlying loader is ready but the data is not available via the
// cache driver yet. This is likely due to the signalling system within the cache driver that prevents
// cancelation, but also allows side-loading and at the same time prevents that the same key is loaded
// multiple times. Tokio doesn't know that this method here is basically a wait loop. So we yield back
// to the tokio worker and to allow it to make some progress. Since flush+load take some time anyways,
// this yield here is not overall performance critical.
tokio::task::yield_now().await;
}
futures = pending;

View File

@ -103,7 +103,9 @@ impl LevelBasedRoundInfo {
// branch in the worst case, thus if that would result in too many files to compact in a single
// plan, run a pre-phase to reduce the number of files first
let num_overlapped_files = get_num_overlapped_files(start_level_files, next_level_files);
if num_start_level + num_overlapped_files > self.max_num_files_per_plan {
if num_start_level > 1
&& num_start_level + num_overlapped_files > self.max_num_files_per_plan
{
// This scaenario meets the simple criteria of start level files + their overlaps are lots of files.
// But ManySmallFiles implies we must compact only within the start level to reduce the quantity of
// start level files. There are several reasons why that might be unhelpful.

View File

@ -1730,3 +1730,414 @@ async fn stuck_l0_large_l0s() {
"###
);
}
// This case is taken from a catalog where the partition was stuck doing single file L0->L0 compactions with a ManySmallFiles classification.
// The key point is that there is 1 L0 file, and enough overlapping L1 files such that the sum of L0 and overlapping L1s are too many for
// a single compaction. So it it tried to do L0->L0 compaction, but you can't get less than 1 L0 file...
#[tokio::test]
async fn single_file_compaction() {
test_helpers::maybe_start_logging();
let max_files = 20;
let setup = layout_setup_builder()
.await
.with_max_num_files_per_plan(max_files)
.with_max_desired_file_size_bytes(MAX_DESIRED_FILE_SIZE)
.with_partition_timeout(Duration::from_millis(1000))
.with_suppress_run_output() // remove this to debug
.build()
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681776057065884000)
.with_max_time(1681848094846357000)
.with_compaction_level(CompactionLevel::Final)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681848108803007952))
.with_file_size_bytes(148352),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681848059723530000)
.with_max_time(1681849022292840000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681849158083717413))
.with_file_size_bytes(8532),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681849256770938000)
.with_max_time(1681849612137939000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681849758018522867))
.with_file_size_bytes(7180),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681849857540998000)
.with_max_time(1681849933405747000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681850058063700468))
.with_file_size_bytes(6354),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681850155949687000)
.with_max_time(1681850525337964000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681850658095040165))
.with_file_size_bytes(7224),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681850533564810000)
.with_max_time(1681850800324334000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681850958072081740))
.with_file_size_bytes(6442),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681850807902300000)
.with_max_time(1681851109057342000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681851258099471556))
.with_file_size_bytes(6467),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681851356697599000)
.with_max_time(1681851731606438000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681851858069516381))
.with_file_size_bytes(7202),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681851768198276000)
.with_max_time(1681852656555310000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681852758025054620))
.with_file_size_bytes(7901),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681852858788440000)
.with_max_time(1681853202074816000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681853358030917913))
.with_file_size_bytes(7175),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681853216031150000)
.with_max_time(1681853533814380000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681853658084495307))
.with_file_size_bytes(6461),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681853755089369000)
.with_max_time(1681854114135030000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681854258102937522))
.with_file_size_bytes(7172),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681854158528835000)
.with_max_time(1681854411758250000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681854558107269518))
.with_file_size_bytes(6445),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681854656198860000)
.with_max_time(1681855901530453000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681856058068217803))
.with_file_size_bytes(9388),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681855930016632000)
.with_max_time(1681856215951881000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681856358077776391))
.with_file_size_bytes(6411),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681856457094364000)
.with_max_time(1681856572199715000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681856658099983774))
.with_file_size_bytes(6471),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681856755669647000)
.with_max_time(1681856797376786000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681856959540758502))
.with_file_size_bytes(6347),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681857059467239000)
.with_max_time(1681857411709822000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681857559463607724))
.with_file_size_bytes(7179),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681857658708732000)
.with_max_time(1681858001258834000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681858159653340111))
.with_file_size_bytes(7171),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681858259089021000)
.with_max_time(1681858311972651000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681858459694290981))
.with_file_size_bytes(6417),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681858336136281000)
.with_max_time(1681858611711634000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681858759770566450))
.with_file_size_bytes(6432),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681858613076367000)
.with_max_time(1681859207290151000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681859359651203045))
.with_file_size_bytes(7211),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681859212497834000)
.with_max_time(1681859549996540000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681859659796715205))
.with_file_size_bytes(6408),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681859755984961000)
.with_max_time(1681860397139689000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681860559596560745))
.with_file_size_bytes(7919),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681860656403220000)
.with_max_time(1681861312602593000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681861463769557785))
.with_file_size_bytes(7920),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681861557592893000)
.with_max_time(1681861592762435000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681861760075293126))
.with_file_size_bytes(6432),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681861612304587000)
.with_max_time(1681861928505695000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681862059957822724))
.with_file_size_bytes(6456),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681862008720364000)
.with_max_time(1681862268794595000)
.with_compaction_level(CompactionLevel::FileNonOverlapped)
.with_max_l0_created_at(Time::from_timestamp_nanos(1681862511938856063))
.with_file_size_bytes(6453),
)
.await;
setup
.partition
.create_parquet_file(
parquet_builder()
.with_min_time(1681776002714783000)
.with_max_time(1681862102913137000)
.with_compaction_level(CompactionLevel::Initial)
.with_max_l0_created_at(Time::from_timestamp_nanos(1683039505904263771))
.with_file_size_bytes(7225),
)
.await;
insta::assert_yaml_snapshot!(
run_layout_scenario(&setup).await,
@r###"
---
- "**** Input Files "
- "L0 "
- "L0.29[1681776002714783000,1681862102913137000] 1683039505.9s 7kb|-----------------------------------------L0.29-----------------------------------------| "
- "L1 "
- "L1.2[1681848059723530000,1681849022292840000] 1681849158.08s 8kb |L1.2| "
- "L1.3[1681849256770938000,1681849612137939000] 1681849758.02s 7kb |L1.3| "
- "L1.4[1681849857540998000,1681849933405747000] 1681850058.06s 6kb |L1.4| "
- "L1.5[1681850155949687000,1681850525337964000] 1681850658.1s 7kb |L1.5| "
- "L1.6[1681850533564810000,1681850800324334000] 1681850958.07s 6kb |L1.6| "
- "L1.7[1681850807902300000,1681851109057342000] 1681851258.1s 6kb |L1.7| "
- "L1.8[1681851356697599000,1681851731606438000] 1681851858.07s 7kb |L1.8| "
- "L1.9[1681851768198276000,1681852656555310000] 1681852758.03s 8kb |L1.9| "
- "L1.10[1681852858788440000,1681853202074816000] 1681853358.03s 7kb |L1.10| "
- "L1.11[1681853216031150000,1681853533814380000] 1681853658.08s 6kb |L1.11| "
- "L1.12[1681853755089369000,1681854114135030000] 1681854258.1s 7kb |L1.12| "
- "L1.13[1681854158528835000,1681854411758250000] 1681854558.11s 6kb |L1.13| "
- "L1.14[1681854656198860000,1681855901530453000] 1681856058.07s 9kb |L1.14| "
- "L1.15[1681855930016632000,1681856215951881000] 1681856358.08s 6kb |L1.15|"
- "L1.16[1681856457094364000,1681856572199715000] 1681856658.1s 6kb |L1.16|"
- "L1.17[1681856755669647000,1681856797376786000] 1681856959.54s 6kb |L1.17|"
- "L1.18[1681857059467239000,1681857411709822000] 1681857559.46s 7kb |L1.18|"
- "L1.19[1681857658708732000,1681858001258834000] 1681858159.65s 7kb |L1.19|"
- "L1.20[1681858259089021000,1681858311972651000] 1681858459.69s 6kb |L1.20|"
- "L1.21[1681858336136281000,1681858611711634000] 1681858759.77s 6kb |L1.21|"
- "L1.22[1681858613076367000,1681859207290151000] 1681859359.65s 7kb |L1.22|"
- "L1.23[1681859212497834000,1681859549996540000] 1681859659.8s 6kb |L1.23|"
- "L1.24[1681859755984961000,1681860397139689000] 1681860559.6s 8kb |L1.24|"
- "L1.25[1681860656403220000,1681861312602593000] 1681861463.77s 8kb |L1.25|"
- "L1.26[1681861557592893000,1681861592762435000] 1681861760.08s 6kb |L1.26|"
- "L1.27[1681861612304587000,1681861928505695000] 1681862059.96s 6kb |L1.27|"
- "L1.28[1681862008720364000,1681862268794595000] 1681862511.94s 6kb |L1.28|"
- "L2 "
- "L2.1[1681776057065884000,1681848094846357000] 1681848108.8s 145kb|----------------------------------L2.1-----------------------------------| "
- "**** Final Output Files (192kb written)"
- "L1 "
- "L1.30[1681776002714783000,1681862268794595000] 1683039505.9s 192kb|-----------------------------------------L1.30------------------------------------------|"
- "L2 "
- "L2.1[1681776057065884000,1681848094846357000] 1681848108.8s 145kb|----------------------------------L2.1-----------------------------------| "
"###
);
}

View File

@ -339,6 +339,12 @@ SELECT COUNT(f64), SUM(f64) FROM m0 GROUP BY TIME(30s) FILL(none);
-- supports offset parameter
SELECT COUNT(f64), SUM(f64) FROM m0 GROUP BY TIME(30s, 1s) FILL(none);
-- N.B. The gap filling of the COUNT(usage_idle) and COUNT(bytes_free)
-- columns happens before the two measurements are UNIONed together
-- when producing the output table. This means that a COUNT column for
-- a field that is not present for a measurement will contain NULLs,
-- rather than being filled with 0s. This is consistent with older
-- versions of influxdb.
SELECT COUNT(usage_idle), COUNT(bytes_free) FROM cpu, disk;
SELECT COUNT(usage_idle), COUNT(bytes_free) FROM cpu, disk GROUP BY TIME(1s) FILL(none);
SELECT COUNT(usage_idle), COUNT(bytes_free) FROM cpu, disk GROUP BY cpu;
@ -360,7 +366,9 @@ SELECT COUNT(usage_idle), usage_idle FROM cpu;
-- Default FILL(null) when FILL is omitted
SELECT COUNT(usage_idle) FROM cpu WHERE time >= '2022-10-31T02:00:00Z' AND time < '2022-10-31T02:02:00Z' GROUP BY TIME(30s);
SELECT COUNT(usage_idle)+2 FROM cpu WHERE time >= '2022-10-31T02:00:00Z' AND time < '2022-10-31T02:02:00Z' GROUP BY TIME(30s);
SELECT COUNT(usage_idle), COUNT(bytes_free) FROM cpu, disk WHERE time >= '2022-10-31T02:00:00Z' AND time < '2022-10-31T02:02:00Z' GROUP BY TIME(30s);
SELECT COUNT(usage_idle)+1, COUNT(bytes_free)+2 FROM cpu, disk WHERE time >= '2022-10-31T02:00:00Z' AND time < '2022-10-31T02:02:00Z' GROUP BY TIME(30s);
SELECT COUNT(usage_idle) FROM cpu WHERE time >= '2022-10-31T02:00:00Z' AND time < '2022-10-31T02:02:00Z' GROUP BY TIME(30s) FILL(null);
SELECT COUNT(usage_idle), COUNT(bytes_free) FROM cpu, disk WHERE time >= '2022-10-31T02:00:00Z' AND time < '2022-10-31T02:02:00Z' GROUP BY TIME(30s) FILL(null);
SELECT COUNT(usage_idle) FROM cpu WHERE time >= '2022-10-31T02:00:00Z' AND time < '2022-10-31T02:02:00Z' GROUP BY TIME(30s) FILL(previous);

View File

@ -919,10 +919,10 @@ name: logical_plan
plan
Sort: iox::measurement ASC NULLS LAST, tag0 ASC NULLS LAST, time ASC NULLS LAST
Union
Projection: Dictionary(Int32, Utf8("m0")) AS iox::measurement, TimestampNanosecond(0, None) AS time, m0.tag0 AS tag0, COUNT(m0.f64) AS count, SUM(m0.f64) AS sum, STDDEV(m0.f64) AS stddev
Projection: Dictionary(Int32, Utf8("m0")) AS iox::measurement, TimestampNanosecond(0, None) AS time, m0.tag0 AS tag0, coalesce_struct(COUNT(m0.f64), Int64(0)) AS count, SUM(m0.f64) AS sum, STDDEV(m0.f64) AS stddev
Aggregate: groupBy=[[m0.tag0]], aggr=[[COUNT(m0.f64), SUM(m0.f64), STDDEV(m0.f64)]]
TableScan: m0 projection=[f64, tag0]
Projection: Dictionary(Int32, Utf8("m1")) AS iox::measurement, TimestampNanosecond(0, None) AS time, m1.tag0 AS tag0, COUNT(m1.f64) AS count, SUM(m1.f64) AS sum, STDDEV(m1.f64) AS stddev
Projection: Dictionary(Int32, Utf8("m1")) AS iox::measurement, TimestampNanosecond(0, None) AS time, m1.tag0 AS tag0, coalesce_struct(COUNT(m1.f64), Int64(0)) AS count, SUM(m1.f64) AS sum, STDDEV(m1.f64) AS stddev
Aggregate: groupBy=[[m1.tag0]], aggr=[[COUNT(m1.f64), SUM(m1.f64), STDDEV(m1.f64)]]
TableScan: m1 projection=[f64, tag0]
name: physical_plan
@ -930,7 +930,7 @@ name: physical_plan
SortPreservingMergeExec: [iox::measurement@0 ASC NULLS LAST,tag0@2 ASC NULLS LAST,time@1 ASC NULLS LAST]
UnionExec
SortExec: expr=[iox::measurement@0 ASC NULLS LAST,tag0@2 ASC NULLS LAST,time@1 ASC NULLS LAST]
ProjectionExec: expr=[m0 as iox::measurement, 0 as time, tag0@0 as tag0, COUNT(m0.f64)@1 as count, SUM(m0.f64)@2 as sum, STDDEV(m0.f64)@3 as stddev]
ProjectionExec: expr=[m0 as iox::measurement, 0 as time, tag0@0 as tag0, coalesce_struct(COUNT(m0.f64)@1, 0) as count, SUM(m0.f64)@2 as sum, STDDEV(m0.f64)@3 as stddev]
AggregateExec: mode=FinalPartitioned, gby=[tag0@0 as tag0], aggr=[COUNT(m0.f64), SUM(m0.f64), STDDEV(m0.f64)]
CoalesceBatchesExec: target_batch_size=8192
RepartitionExec: partitioning=Hash([tag0@0], 4), input_partitions=4
@ -938,7 +938,7 @@ name: physical_plan
AggregateExec: mode=Partial, gby=[tag0@1 as tag0], aggr=[COUNT(m0.f64), SUM(m0.f64), STDDEV(m0.f64)]
ParquetExec: file_groups={1 group: [[1/1/1/00000000-0000-0000-0000-000000000000.parquet]]}, projection=[f64, tag0]
SortExec: expr=[iox::measurement@0 ASC NULLS LAST,tag0@2 ASC NULLS LAST,time@1 ASC NULLS LAST]
ProjectionExec: expr=[m1 as iox::measurement, 0 as time, tag0@0 as tag0, COUNT(m1.f64)@1 as count, SUM(m1.f64)@2 as sum, STDDEV(m1.f64)@3 as stddev]
ProjectionExec: expr=[m1 as iox::measurement, 0 as time, tag0@0 as tag0, coalesce_struct(COUNT(m1.f64)@1, 0) as count, SUM(m1.f64)@2 as sum, STDDEV(m1.f64)@3 as stddev]
RepartitionExec: partitioning=RoundRobinBatch(4), input_partitions=4
AggregateExec: mode=FinalPartitioned, gby=[tag0@0 as tag0], aggr=[COUNT(m1.f64), SUM(m1.f64), STDDEV(m1.f64)], ordering_mode=FullyOrdered
CoalesceBatchesExec: target_batch_size=8192
@ -1267,9 +1267,19 @@ name: cpu
| time | count |
+---------------------+-------+
| 2022-10-31T02:00:00 | 6 |
| 2022-10-31T02:00:30 | |
| 2022-10-31T02:01:00 | |
| 2022-10-31T02:01:30 | |
| 2022-10-31T02:00:30 | 0 |
| 2022-10-31T02:01:00 | 0 |
| 2022-10-31T02:01:30 | 0 |
+---------------------+-------+
-- InfluxQL: SELECT COUNT(usage_idle)+2 FROM cpu WHERE time >= '2022-10-31T02:00:00Z' AND time < '2022-10-31T02:02:00Z' GROUP BY TIME(30s);
name: cpu
+---------------------+-------+
| time | count |
+---------------------+-------+
| 2022-10-31T02:00:00 | 8 |
| 2022-10-31T02:00:30 | 2 |
| 2022-10-31T02:01:00 | 2 |
| 2022-10-31T02:01:30 | 2 |
+---------------------+-------+
-- InfluxQL: SELECT COUNT(usage_idle), COUNT(bytes_free) FROM cpu, disk WHERE time >= '2022-10-31T02:00:00Z' AND time < '2022-10-31T02:02:00Z' GROUP BY TIME(30s);
name: cpu
@ -1277,18 +1287,37 @@ name: cpu
| time | count | count_1 |
+---------------------+-------+---------+
| 2022-10-31T02:00:00 | 6 | |
| 2022-10-31T02:00:30 | | |
| 2022-10-31T02:01:00 | | |
| 2022-10-31T02:01:30 | | |
| 2022-10-31T02:00:30 | 0 | |
| 2022-10-31T02:01:00 | 0 | |
| 2022-10-31T02:01:30 | 0 | |
+---------------------+-------+---------+
name: disk
+---------------------+-------+---------+
| time | count | count_1 |
+---------------------+-------+---------+
| 2022-10-31T02:00:00 | | 6 |
| 2022-10-31T02:00:30 | | |
| 2022-10-31T02:01:00 | | |
| 2022-10-31T02:01:30 | | |
| 2022-10-31T02:00:30 | | 0 |
| 2022-10-31T02:01:00 | | 0 |
| 2022-10-31T02:01:30 | | 0 |
+---------------------+-------+---------+
-- InfluxQL: SELECT COUNT(usage_idle)+1, COUNT(bytes_free)+2 FROM cpu, disk WHERE time >= '2022-10-31T02:00:00Z' AND time < '2022-10-31T02:02:00Z' GROUP BY TIME(30s);
name: cpu
+---------------------+-------+---------+
| time | count | count_1 |
+---------------------+-------+---------+
| 2022-10-31T02:00:00 | 7 | |
| 2022-10-31T02:00:30 | 1 | |
| 2022-10-31T02:01:00 | 1 | |
| 2022-10-31T02:01:30 | 1 | |
+---------------------+-------+---------+
name: disk
+---------------------+-------+---------+
| time | count | count_1 |
+---------------------+-------+---------+
| 2022-10-31T02:00:00 | | 8 |
| 2022-10-31T02:00:30 | | 2 |
| 2022-10-31T02:01:00 | | 2 |
| 2022-10-31T02:01:30 | | 2 |
+---------------------+-------+---------+
-- InfluxQL: SELECT COUNT(usage_idle) FROM cpu WHERE time >= '2022-10-31T02:00:00Z' AND time < '2022-10-31T02:02:00Z' GROUP BY TIME(30s) FILL(null);
name: cpu
@ -1296,9 +1325,9 @@ name: cpu
| time | count |
+---------------------+-------+
| 2022-10-31T02:00:00 | 6 |
| 2022-10-31T02:00:30 | |
| 2022-10-31T02:01:00 | |
| 2022-10-31T02:01:30 | |
| 2022-10-31T02:00:30 | 0 |
| 2022-10-31T02:01:00 | 0 |
| 2022-10-31T02:01:30 | 0 |
+---------------------+-------+
-- InfluxQL: SELECT COUNT(usage_idle), COUNT(bytes_free) FROM cpu, disk WHERE time >= '2022-10-31T02:00:00Z' AND time < '2022-10-31T02:02:00Z' GROUP BY TIME(30s) FILL(null);
name: cpu
@ -1306,18 +1335,18 @@ name: cpu
| time | count | count_1 |
+---------------------+-------+---------+
| 2022-10-31T02:00:00 | 6 | |
| 2022-10-31T02:00:30 | | |
| 2022-10-31T02:01:00 | | |
| 2022-10-31T02:01:30 | | |
| 2022-10-31T02:00:30 | 0 | |
| 2022-10-31T02:01:00 | 0 | |
| 2022-10-31T02:01:30 | 0 | |
+---------------------+-------+---------+
name: disk
+---------------------+-------+---------+
| time | count | count_1 |
+---------------------+-------+---------+
| 2022-10-31T02:00:00 | | 6 |
| 2022-10-31T02:00:30 | | |
| 2022-10-31T02:01:00 | | |
| 2022-10-31T02:01:30 | | |
| 2022-10-31T02:00:30 | | 0 |
| 2022-10-31T02:01:00 | | 0 |
| 2022-10-31T02:01:30 | | 0 |
+---------------------+-------+---------+
-- InfluxQL: SELECT COUNT(usage_idle) FROM cpu WHERE time >= '2022-10-31T02:00:00Z' AND time < '2022-10-31T02:02:00Z' GROUP BY TIME(30s) FILL(previous);
name: cpu
@ -1507,9 +1536,9 @@ tags: cpu=cpu-total
| time | count |
+---------------------+-------+
| 2022-10-31T02:00:00 | 2 |
| 2022-10-31T02:00:30 | |
| 2022-10-31T02:01:00 | |
| 2022-10-31T02:01:30 | |
| 2022-10-31T02:00:30 | 0 |
| 2022-10-31T02:01:00 | 0 |
| 2022-10-31T02:01:30 | 0 |
+---------------------+-------+
name: cpu
tags: cpu=cpu0
@ -1517,9 +1546,9 @@ tags: cpu=cpu0
| time | count |
+---------------------+-------+
| 2022-10-31T02:00:00 | 2 |
| 2022-10-31T02:00:30 | |
| 2022-10-31T02:01:00 | |
| 2022-10-31T02:01:30 | |
| 2022-10-31T02:00:30 | 0 |
| 2022-10-31T02:01:00 | 0 |
| 2022-10-31T02:01:30 | 0 |
+---------------------+-------+
name: cpu
tags: cpu=cpu1
@ -1527,9 +1556,9 @@ tags: cpu=cpu1
| time | count |
+---------------------+-------+
| 2022-10-31T02:00:00 | 2 |
| 2022-10-31T02:00:30 | |
| 2022-10-31T02:01:00 | |
| 2022-10-31T02:01:30 | |
| 2022-10-31T02:00:30 | 0 |
| 2022-10-31T02:01:00 | 0 |
| 2022-10-31T02:01:30 | 0 |
+---------------------+-------+
-- InfluxQL: SELECT COUNT(usage_idle) FROM cpu WHERE time >= '2022-10-31T02:00:00Z' AND time < '2022-10-31T02:02:00Z' GROUP BY TIME(30s), cpu FILL(null);
name: cpu
@ -1538,9 +1567,9 @@ tags: cpu=cpu-total
| time | count |
+---------------------+-------+
| 2022-10-31T02:00:00 | 2 |
| 2022-10-31T02:00:30 | |
| 2022-10-31T02:01:00 | |
| 2022-10-31T02:01:30 | |
| 2022-10-31T02:00:30 | 0 |
| 2022-10-31T02:01:00 | 0 |
| 2022-10-31T02:01:30 | 0 |
+---------------------+-------+
name: cpu
tags: cpu=cpu0
@ -1548,9 +1577,9 @@ tags: cpu=cpu0
| time | count |
+---------------------+-------+
| 2022-10-31T02:00:00 | 2 |
| 2022-10-31T02:00:30 | |
| 2022-10-31T02:01:00 | |
| 2022-10-31T02:01:30 | |
| 2022-10-31T02:00:30 | 0 |
| 2022-10-31T02:01:00 | 0 |
| 2022-10-31T02:01:30 | 0 |
+---------------------+-------+
name: cpu
tags: cpu=cpu1
@ -1558,9 +1587,9 @@ tags: cpu=cpu1
| time | count |
+---------------------+-------+
| 2022-10-31T02:00:00 | 2 |
| 2022-10-31T02:00:30 | |
| 2022-10-31T02:01:00 | |
| 2022-10-31T02:01:30 | |
| 2022-10-31T02:00:30 | 0 |
| 2022-10-31T02:01:00 | 0 |
| 2022-10-31T02:01:30 | 0 |
+---------------------+-------+
-- InfluxQL: SELECT COUNT(usage_idle), COUNT(bytes_free) FROM cpu, disk WHERE time >= '2022-10-31T02:00:00Z' AND time < '2022-10-31T02:02:00Z' GROUP BY TIME(30s), cpu, device FILL(null);
name: cpu
@ -1569,9 +1598,9 @@ tags: cpu=cpu-total, device=
| time | count | count_1 |
+---------------------+-------+---------+
| 2022-10-31T02:00:00 | 2 | |
| 2022-10-31T02:00:30 | | |
| 2022-10-31T02:01:00 | | |
| 2022-10-31T02:01:30 | | |
| 2022-10-31T02:00:30 | 0 | |
| 2022-10-31T02:01:00 | 0 | |
| 2022-10-31T02:01:30 | 0 | |
+---------------------+-------+---------+
name: cpu
tags: cpu=cpu0, device=
@ -1579,9 +1608,9 @@ tags: cpu=cpu0, device=
| time | count | count_1 |
+---------------------+-------+---------+
| 2022-10-31T02:00:00 | 2 | |
| 2022-10-31T02:00:30 | | |
| 2022-10-31T02:01:00 | | |
| 2022-10-31T02:01:30 | | |
| 2022-10-31T02:00:30 | 0 | |
| 2022-10-31T02:01:00 | 0 | |
| 2022-10-31T02:01:30 | 0 | |
+---------------------+-------+---------+
name: cpu
tags: cpu=cpu1, device=
@ -1589,9 +1618,9 @@ tags: cpu=cpu1, device=
| time | count | count_1 |
+---------------------+-------+---------+
| 2022-10-31T02:00:00 | 2 | |
| 2022-10-31T02:00:30 | | |
| 2022-10-31T02:01:00 | | |
| 2022-10-31T02:01:30 | | |
| 2022-10-31T02:00:30 | 0 | |
| 2022-10-31T02:01:00 | 0 | |
| 2022-10-31T02:01:30 | 0 | |
+---------------------+-------+---------+
name: disk
tags: cpu=, device=disk1s1
@ -1599,9 +1628,9 @@ tags: cpu=, device=disk1s1
| time | count | count_1 |
+---------------------+-------+---------+
| 2022-10-31T02:00:00 | | 2 |
| 2022-10-31T02:00:30 | | |
| 2022-10-31T02:01:00 | | |
| 2022-10-31T02:01:30 | | |
| 2022-10-31T02:00:30 | | 0 |
| 2022-10-31T02:01:00 | | 0 |
| 2022-10-31T02:01:30 | | 0 |
+---------------------+-------+---------+
name: disk
tags: cpu=, device=disk1s2
@ -1609,9 +1638,9 @@ tags: cpu=, device=disk1s2
| time | count | count_1 |
+---------------------+-------+---------+
| 2022-10-31T02:00:00 | | 2 |
| 2022-10-31T02:00:30 | | |
| 2022-10-31T02:01:00 | | |
| 2022-10-31T02:01:30 | | |
| 2022-10-31T02:00:30 | | 0 |
| 2022-10-31T02:01:00 | | 0 |
| 2022-10-31T02:01:30 | | 0 |
+---------------------+-------+---------+
name: disk
tags: cpu=, device=disk1s5
@ -1619,9 +1648,9 @@ tags: cpu=, device=disk1s5
| time | count | count_1 |
+---------------------+-------+---------+
| 2022-10-31T02:00:00 | | 2 |
| 2022-10-31T02:00:30 | | |
| 2022-10-31T02:01:00 | | |
| 2022-10-31T02:01:30 | | |
| 2022-10-31T02:00:30 | | 0 |
| 2022-10-31T02:01:00 | | 0 |
| 2022-10-31T02:01:30 | | 0 |
+---------------------+-------+---------+
-- InfluxQL: SELECT COUNT(usage_idle) FROM cpu WHERE time >= '2022-10-31T02:00:00Z' AND time < '2022-10-31T02:02:00Z' GROUP BY TIME(30s), cpu FILL(previous);
name: cpu
@ -2202,15 +2231,15 @@ name: cpu
| time | count |
+---------------------+-------+
| 2022-10-31T02:00:00 | 6 |
| 2022-10-31T02:00:30 | |
| 2022-10-31T02:00:30 | 0 |
+---------------------+-------+
-- InfluxQL: SELECT COUNT(usage_idle) FROM cpu WHERE time >= '2022-10-31T02:00:00Z' AND time < '2022-10-31T02:05:00Z' GROUP BY TIME(30s) LIMIT 2 OFFSET 2;
name: cpu
+---------------------+-------+
| time | count |
+---------------------+-------+
| 2022-10-31T02:01:00 | |
| 2022-10-31T02:01:30 | |
| 2022-10-31T02:01:00 | 0 |
| 2022-10-31T02:01:30 | 0 |
+---------------------+-------+
-- InfluxQL: SELECT COUNT(usage_idle) FROM cpu WHERE time >= '2022-10-31T02:00:00Z' AND time < '2022-10-31T02:05:00Z' GROUP BY TIME(30s), cpu LIMIT 2;
name: cpu
@ -2219,7 +2248,7 @@ tags: cpu=cpu-total
| time | count |
+---------------------+-------+
| 2022-10-31T02:00:00 | 2 |
| 2022-10-31T02:00:30 | |
| 2022-10-31T02:00:30 | 0 |
+---------------------+-------+
name: cpu
tags: cpu=cpu0
@ -2227,7 +2256,7 @@ tags: cpu=cpu0
| time | count |
+---------------------+-------+
| 2022-10-31T02:00:00 | 2 |
| 2022-10-31T02:00:30 | |
| 2022-10-31T02:00:30 | 0 |
+---------------------+-------+
name: cpu
tags: cpu=cpu1
@ -2235,7 +2264,7 @@ tags: cpu=cpu1
| time | count |
+---------------------+-------+
| 2022-10-31T02:00:00 | 2 |
| 2022-10-31T02:00:30 | |
| 2022-10-31T02:00:30 | 0 |
+---------------------+-------+
-- InfluxQL: SELECT COUNT(usage_idle), COUNT(bytes_free) FROM cpu, disk WHERE time >= '2022-10-31T02:00:00Z' AND time < '2022-10-31T02:02:00Z' GROUP BY TIME(30s) LIMIT 1;
name: cpu
@ -2268,13 +2297,13 @@ name: cpu
+---------------------+-------+---------+
| time | count | count_1 |
+---------------------+-------+---------+
| 2022-10-31T02:01:30 | | |
| 2022-10-31T02:01:30 | 0 | |
+---------------------+-------+---------+
name: disk
+---------------------+-------+---------+
| time | count | count_1 |
+---------------------+-------+---------+
| 2022-10-31T02:01:30 | | |
| 2022-10-31T02:01:30 | | 0 |
+---------------------+-------+---------+
-- InfluxQL: SELECT COUNT(usage_idle), COUNT(bytes_free) FROM cpu, disk WHERE time >= '2022-10-31T02:00:00Z' AND time < '2022-10-31T02:02:00Z' GROUP BY TIME(30s), cpu, device LIMIT 1;
name: cpu

View File

@ -21,6 +21,19 @@ SELECT difference(mean(writes)) FROM diskio WHERE time >= 0000000130000000000 AN
-- group by time and a tag
SELECT difference(mean(usage_idle)) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;
--
-- difference + selector
--
SELECT difference(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s);
SELECT difference(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(30s);
-- the input data is regular data at 10s intervals, so 7s windows ensure the `mean` generates windows with NULL values to test NULL handling of difference
SELECT difference(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(0);
SELECT difference(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(previous);
-- linear filling of selector functions produces an execution error
-- (see https://github.com/influxdata/influxdb_iox/issues/8302).
-- SELECT difference(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(linear);
-- group by time and a tag
SELECT difference(first(usage_idle)) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;
--
-- non_negative_difference
@ -35,6 +48,11 @@ SELECT non_negative_difference(usage_idle) FROM cpu WHERE time >= 00000001300000
--
SELECT non_negative_difference(mean(usage_idle)) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;
--
-- non_negative_difference + selector
--
SELECT non_negative_difference(first(usage_idle)) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;
--
-- moving_average
--
@ -61,6 +79,17 @@ SELECT moving_average(mean(writes), 3) FROM diskio WHERE time >= 000000013000000
SELECT moving_average(mean(writes), 3) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(previous);
SELECT moving_average(mean(writes), 3) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(linear);
--
-- moving_average + selector
--
-- the input data is regular data at 10s intervals, so 7s windows ensure the `mean` generates windows with NULL values to test NULL handling of moving_average
SELECT moving_average(first(writes), 3) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s);
SELECT moving_average(first(writes), 3) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(0);
SELECT moving_average(first(writes), 3) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(previous);
-- linear filling of selector functions produces an execution error
-- (see https://github.com/influxdata/influxdb_iox/issues/8302).
-- SELECT moving_average(first(writes), 3) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(linear);
--
-- combining window functions
--
@ -109,7 +138,7 @@ SELECT derivative(mean(writes)) FROM diskio WHERE time >= 0000000130000000000 AN
SELECT derivative(mean(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s);
SELECT derivative(mean(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(30s);
SELECT derivative(mean(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(30s);
-- the input data is regular data at 10s intervals, so 7s windows ensure the `mean` generates windows with NULL values to test NULL handling of difference
-- the input data is regular data at 10s intervals, so 7s windows ensure the `mean` generates windows with NULL values to test NULL handling of derivative
SELECT derivative(mean(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(0);
SELECT derivative(mean(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(0);
SELECT derivative(mean(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(previous);
@ -120,6 +149,26 @@ SELECT derivative(mean(writes), 500ms) FROM diskio WHERE time >= 000000013000000
SELECT derivative(mean(usage_idle)) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;
SELECT derivative(mean(usage_idle), 500ms) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;
--
-- derivative + selector
--
SELECT derivative(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s);
SELECT derivative(first(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s);
SELECT derivative(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(30s);
SELECT derivative(first(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(30s);
-- the input data is regular data at 10s intervals, so 7s windows ensure the `first` generates windows with NULL values to test NULL handling of derivative
SELECT derivative(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(0);
SELECT derivative(first(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(0);
SELECT derivative(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(previous);
SELECT derivative(first(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(previous);
-- linear filling of selector functions produces an execution error
-- (see https://github.com/influxdata/influxdb_iox/issues/8302).
-- SELECT derivative(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(linear);
-- SELECT derivative(first(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(linear);
-- group by time and a tag
SELECT derivative(first(usage_idle)) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;
SELECT derivative(first(usage_idle), 500ms) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;
--
-- non_negative_derivative
--
@ -138,7 +187,7 @@ SELECT non_negative_derivative(mean(writes)) FROM diskio WHERE time >= 000000013
SELECT non_negative_derivative(mean(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s);
SELECT non_negative_derivative(mean(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(30s);
SELECT non_negative_derivative(mean(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(30s);
-- the input data is regular data at 10s intervals, so 7s windows ensure the `mean` generates windows with NULL values to test NULL handling of difference
-- the input data is regular data at 10s intervals, so 7s windows ensure the `mean` generates windows with NULL values to test NULL handling of non_negative_derivative
SELECT non_negative_derivative(mean(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(0);
SELECT non_negative_derivative(mean(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(0);
SELECT non_negative_derivative(mean(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(previous);
@ -149,6 +198,26 @@ SELECT non_negative_derivative(mean(writes), 500ms) FROM diskio WHERE time >= 00
SELECT non_negative_derivative(mean(usage_idle)) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;
SELECT non_negative_derivative(mean(usage_idle), 500ms) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;
--
-- non_negative_derivative + selector
--
SELECT non_negative_derivative(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s);
SELECT non_negative_derivative(first(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s);
SELECT non_negative_derivative(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(30s);
SELECT non_negative_derivative(first(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(30s);
-- the input data is regular data at 10s intervals, so 7s windows ensure the `first` generates windows with NULL values to test NULL handling of non_negative_derivative
SELECT non_negative_derivative(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(0);
SELECT non_negative_derivative(first(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(0);
SELECT non_negative_derivative(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(previous);
SELECT non_negative_derivative(first(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(previous);
-- linear filling of selector functions produces an execution error
-- (see https://github.com/influxdata/influxdb_iox/issues/8302).
-- SELECT non_negative_derivative(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(linear);
-- SELECT non_negative_derivative(first(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(linear);
-- group by time and a tag
SELECT non_negative_derivative(first(usage_idle)) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;
SELECT non_negative_derivative(first(usage_idle), 500ms) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;
--
-- cumulative_sum
--
@ -167,4 +236,18 @@ SELECT cumulative_sum(mean(writes)) FROM diskio WHERE time >= 000000013000000000
SELECT cumulative_sum(mean(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(previous);
SELECT cumulative_sum(mean(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(linear);
-- group by time and a tag
SELECT cumulative_sum(mean(usage_idle)) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;
SELECT cumulative_sum(mean(usage_idle)) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;
--
-- cumulative_sum + selector
--
SELECT cumulative_sum(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s);
SELECT cumulative_sum(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(30s);
-- the input data is regular data at 10s intervals, so 7s windows ensure the `first` generates windows with NULL values to test NULL handling of cumulative_sum
SELECT cumulative_sum(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(0);
SELECT cumulative_sum(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(previous);
-- linear filling of selector functions produces an execution error
-- (see https://github.com/influxdata/influxdb_iox/issues/8302).
-- SELECT cumulative_sum(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(linear);
-- group by time and a tag
SELECT cumulative_sum(first(usage_idle)) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;

View File

@ -148,6 +148,86 @@ tags: cpu=cpu1
| 1970-01-01T00:02:30 | -0.03333333333334565 |
| 1970-01-01T00:03:00 | -0.03333333333333144 |
+---------------------+----------------------+
-- InfluxQL: SELECT difference(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s);
name: diskio
+---------------------+------------+
| time | difference |
+---------------------+------------+
| 1970-01-01T00:02:20 | 164 |
| 1970-01-01T00:02:27 | 187 |
| 1970-01-01T00:02:34 | 112 |
| 1970-01-01T00:02:48 | 110 |
| 1970-01-01T00:02:55 | 219 |
| 1970-01-01T00:03:09 | 75 |
| 1970-01-01T00:03:16 | 76 |
| 1970-01-01T00:03:30 | 146 |
+---------------------+------------+
-- InfluxQL: SELECT difference(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(30s);
name: diskio
+---------------------+------------+
| time | difference |
+---------------------+------------+
| 1970-01-01T00:02:00 | 366 |
| 1970-01-01T00:02:30 | 421 |
| 1970-01-01T00:03:00 | 441 |
| 1970-01-01T00:03:30 | 297 |
+---------------------+------------+
-- InfluxQL: SELECT difference(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(0);
name: diskio
+---------------------+------------+
| time | difference |
+---------------------+------------+
| 1970-01-01T00:02:06 | 5592646 |
| 1970-01-01T00:02:13 | -5592646 |
| 1970-01-01T00:02:20 | 5592810 |
| 1970-01-01T00:02:27 | 187 |
| 1970-01-01T00:02:34 | 112 |
| 1970-01-01T00:02:41 | -5593109 |
| 1970-01-01T00:02:48 | 5593219 |
| 1970-01-01T00:02:55 | 219 |
| 1970-01-01T00:03:02 | -5593438 |
| 1970-01-01T00:03:09 | 5593513 |
| 1970-01-01T00:03:16 | 76 |
| 1970-01-01T00:03:23 | -5593589 |
| 1970-01-01T00:03:30 | 5593735 |
+---------------------+------------+
-- InfluxQL: SELECT difference(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(previous);
name: diskio
+---------------------+------------+
| time | difference |
+---------------------+------------+
| 1970-01-01T00:02:13 | 0 |
| 1970-01-01T00:02:20 | 164 |
| 1970-01-01T00:02:27 | 187 |
| 1970-01-01T00:02:34 | 112 |
| 1970-01-01T00:02:41 | 0 |
| 1970-01-01T00:02:48 | 110 |
| 1970-01-01T00:02:55 | 219 |
| 1970-01-01T00:03:02 | 0 |
| 1970-01-01T00:03:09 | 75 |
| 1970-01-01T00:03:16 | 76 |
| 1970-01-01T00:03:23 | 0 |
| 1970-01-01T00:03:30 | 146 |
+---------------------+------------+
-- InfluxQL: SELECT difference(first(usage_idle)) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;
name: cpu
tags: cpu=cpu0
+---------------------+---------------------+
| time | difference |
+---------------------+---------------------+
| 1970-01-01T00:02:00 | -0.7999999999999972 |
| 1970-01-01T00:02:30 | 3.5 |
| 1970-01-01T00:03:00 | -0.4000000000000057 |
+---------------------+---------------------+
name: cpu
tags: cpu=cpu1
+---------------------+----------------------+
| time | difference |
+---------------------+----------------------+
| 1970-01-01T00:02:00 | 0.20000000000000284 |
| 1970-01-01T00:02:30 | 0.0 |
| 1970-01-01T00:03:00 | -0.10000000000000853 |
+---------------------+----------------------+
-- InfluxQL: SELECT non_negative_difference(usage_system) FROM cpu WHERE time >= 0000000060000000000 AND time < 0000000210000000001 AND cpu = 'cpu0';
name: cpu
+---------------------+-------------------------+
@ -202,6 +282,22 @@ tags: cpu=cpu1
+---------------------+-------------------------+
| 1970-01-01T00:02:00 | 0.36666666666667425 |
+---------------------+-------------------------+
-- InfluxQL: SELECT non_negative_difference(first(usage_idle)) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;
name: cpu
tags: cpu=cpu0
+---------------------+-------------------------+
| time | non_negative_difference |
+---------------------+-------------------------+
| 1970-01-01T00:02:30 | 3.5 |
+---------------------+-------------------------+
name: cpu
tags: cpu=cpu1
+---------------------+-------------------------+
| time | non_negative_difference |
+---------------------+-------------------------+
| 1970-01-01T00:02:00 | 0.20000000000000284 |
| 1970-01-01T00:02:30 | 0.0 |
+---------------------+-------------------------+
-- InfluxQL: SELECT moving_average(writes, 3) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001;
name: diskio
+---------------------+-------------------+
@ -307,6 +403,54 @@ name: diskio
| 1970-01-01T00:03:23 | 5593588.0 |
| 1970-01-01T00:03:30 | 5593662.0 |
+---------------------+-------------------+
-- InfluxQL: SELECT moving_average(first(writes), 3) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s);
name: diskio
+---------------------+-------------------+
| time | moving_average |
+---------------------+-------------------+
| 1970-01-01T00:02:27 | 5592817.666666667 |
| 1970-01-01T00:02:34 | 5592972.0 |
| 1970-01-01T00:02:48 | 5593108.333333333 |
| 1970-01-01T00:02:55 | 5593255.333333333 |
| 1970-01-01T00:03:09 | 5593390.0 |
| 1970-01-01T00:03:16 | 5593513.333333333 |
| 1970-01-01T00:03:30 | 5593612.333333333 |
+---------------------+-------------------+
-- InfluxQL: SELECT moving_average(first(writes), 3) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(0);
name: diskio
+---------------------+--------------------+
| time | moving_average |
+---------------------+--------------------+
| 1970-01-01T00:02:13 | 1864215.3333333333 |
| 1970-01-01T00:02:20 | 3728485.3333333335 |
| 1970-01-01T00:02:27 | 3728602.3333333335 |
| 1970-01-01T00:02:34 | 5592972.0 |
| 1970-01-01T00:02:41 | 3728702.0 |
| 1970-01-01T00:02:48 | 3728776.0 |
| 1970-01-01T00:02:55 | 3728885.6666666665 |
| 1970-01-01T00:03:02 | 3728885.6666666665 |
| 1970-01-01T00:03:09 | 3728983.6666666665 |
| 1970-01-01T00:03:16 | 3729034.0 |
| 1970-01-01T00:03:23 | 3729034.0 |
| 1970-01-01T00:03:30 | 3729108.0 |
+---------------------+--------------------+
-- InfluxQL: SELECT moving_average(first(writes), 3) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(previous);
name: diskio
+---------------------+-------------------+
| time | moving_average |
+---------------------+-------------------+
| 1970-01-01T00:02:20 | 5592700.666666667 |
| 1970-01-01T00:02:27 | 5592817.666666667 |
| 1970-01-01T00:02:34 | 5592972.0 |
| 1970-01-01T00:02:41 | 5593071.666666667 |
| 1970-01-01T00:02:48 | 5593145.666666667 |
| 1970-01-01T00:02:55 | 5593255.333333333 |
| 1970-01-01T00:03:02 | 5593365.0 |
| 1970-01-01T00:03:09 | 5593463.0 |
| 1970-01-01T00:03:16 | 5593513.333333333 |
| 1970-01-01T00:03:23 | 5593563.666666667 |
| 1970-01-01T00:03:30 | 5593637.666666667 |
+---------------------+-------------------+
-- InfluxQL: SELECT difference(usage_idle), non_negative_difference(usage_idle), moving_average(usage_idle, 4) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY cpu;
name: cpu
tags: cpu=cpu0
@ -649,6 +793,166 @@ tags: cpu=cpu1
| 1970-01-01T00:02:30 | -0.0005555555555557608 |
| 1970-01-01T00:03:00 | -0.000555555555555524 |
+---------------------+------------------------+
-- InfluxQL: SELECT derivative(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s);
name: diskio
+---------------------+------------+
| time | derivative |
+---------------------+------------+
| 1970-01-01T00:02:20 | 82.0 |
| 1970-01-01T00:02:27 | 187.0 |
| 1970-01-01T00:02:34 | 112.0 |
| 1970-01-01T00:02:48 | 55.0 |
| 1970-01-01T00:02:55 | 219.0 |
| 1970-01-01T00:03:09 | 37.5 |
| 1970-01-01T00:03:16 | 76.0 |
| 1970-01-01T00:03:30 | 73.0 |
+---------------------+------------+
-- InfluxQL: SELECT derivative(first(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s);
name: diskio
+---------------------+--------------------+
| time | derivative |
+---------------------+--------------------+
| 1970-01-01T00:02:20 | 5.857142857142857 |
| 1970-01-01T00:02:27 | 13.357142857142858 |
| 1970-01-01T00:02:34 | 8.0 |
| 1970-01-01T00:02:48 | 3.9285714285714284 |
| 1970-01-01T00:02:55 | 15.642857142857142 |
| 1970-01-01T00:03:09 | 2.6785714285714284 |
| 1970-01-01T00:03:16 | 5.428571428571429 |
| 1970-01-01T00:03:30 | 5.214285714285714 |
+---------------------+--------------------+
-- InfluxQL: SELECT derivative(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(30s);
name: diskio
+---------------------+------------+
| time | derivative |
+---------------------+------------+
| 1970-01-01T00:02:00 | 366.0 |
| 1970-01-01T00:02:30 | 421.0 |
| 1970-01-01T00:03:00 | 441.0 |
| 1970-01-01T00:03:30 | 297.0 |
+---------------------+------------+
-- InfluxQL: SELECT derivative(first(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(30s);
name: diskio
+---------------------+-------------------+
| time | derivative |
+---------------------+-------------------+
| 1970-01-01T00:02:00 | 6.1 |
| 1970-01-01T00:02:30 | 7.016666666666667 |
| 1970-01-01T00:03:00 | 7.35 |
| 1970-01-01T00:03:30 | 4.95 |
+---------------------+-------------------+
-- InfluxQL: SELECT derivative(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(0);
name: diskio
+---------------------+------------+
| time | derivative |
+---------------------+------------+
| 1970-01-01T00:02:06 | 5592646.0 |
| 1970-01-01T00:02:13 | -5592646.0 |
| 1970-01-01T00:02:20 | 5592810.0 |
| 1970-01-01T00:02:27 | 187.0 |
| 1970-01-01T00:02:34 | 112.0 |
| 1970-01-01T00:02:41 | -5593109.0 |
| 1970-01-01T00:02:48 | 5593219.0 |
| 1970-01-01T00:02:55 | 219.0 |
| 1970-01-01T00:03:02 | -5593438.0 |
| 1970-01-01T00:03:09 | 5593513.0 |
| 1970-01-01T00:03:16 | 76.0 |
| 1970-01-01T00:03:23 | -5593589.0 |
| 1970-01-01T00:03:30 | 5593735.0 |
+---------------------+------------+
-- InfluxQL: SELECT derivative(first(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(0);
name: diskio
+---------------------+---------------------+
| time | derivative |
+---------------------+---------------------+
| 1970-01-01T00:02:06 | 399474.71428571426 |
| 1970-01-01T00:02:13 | -399474.71428571426 |
| 1970-01-01T00:02:20 | 399486.4285714286 |
| 1970-01-01T00:02:27 | 13.357142857142858 |
| 1970-01-01T00:02:34 | 8.0 |
| 1970-01-01T00:02:41 | -399507.78571428574 |
| 1970-01-01T00:02:48 | 399515.64285714284 |
| 1970-01-01T00:02:55 | 15.642857142857142 |
| 1970-01-01T00:03:02 | -399531.28571428574 |
| 1970-01-01T00:03:09 | 399536.64285714284 |
| 1970-01-01T00:03:16 | 5.428571428571429 |
| 1970-01-01T00:03:23 | -399542.0714285714 |
| 1970-01-01T00:03:30 | 399552.5 |
+---------------------+---------------------+
-- InfluxQL: SELECT derivative(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(previous);
name: diskio
+---------------------+------------+
| time | derivative |
+---------------------+------------+
| 1970-01-01T00:02:13 | 0.0 |
| 1970-01-01T00:02:20 | 164.0 |
| 1970-01-01T00:02:27 | 187.0 |
| 1970-01-01T00:02:34 | 112.0 |
| 1970-01-01T00:02:41 | 0.0 |
| 1970-01-01T00:02:48 | 110.0 |
| 1970-01-01T00:02:55 | 219.0 |
| 1970-01-01T00:03:02 | 0.0 |
| 1970-01-01T00:03:09 | 75.0 |
| 1970-01-01T00:03:16 | 76.0 |
| 1970-01-01T00:03:23 | 0.0 |
| 1970-01-01T00:03:30 | 146.0 |
+---------------------+------------+
-- InfluxQL: SELECT derivative(first(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(previous);
name: diskio
+---------------------+--------------------+
| time | derivative |
+---------------------+--------------------+
| 1970-01-01T00:02:13 | 0.0 |
| 1970-01-01T00:02:20 | 11.714285714285714 |
| 1970-01-01T00:02:27 | 13.357142857142858 |
| 1970-01-01T00:02:34 | 8.0 |
| 1970-01-01T00:02:41 | 0.0 |
| 1970-01-01T00:02:48 | 7.857142857142857 |
| 1970-01-01T00:02:55 | 15.642857142857142 |
| 1970-01-01T00:03:02 | 0.0 |
| 1970-01-01T00:03:09 | 5.357142857142857 |
| 1970-01-01T00:03:16 | 5.428571428571429 |
| 1970-01-01T00:03:23 | 0.0 |
| 1970-01-01T00:03:30 | 10.428571428571429 |
+---------------------+--------------------+
-- InfluxQL: SELECT derivative(first(usage_idle)) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;
name: cpu
tags: cpu=cpu0
+---------------------+---------------------+
| time | derivative |
+---------------------+---------------------+
| 1970-01-01T00:02:00 | -0.7999999999999972 |
| 1970-01-01T00:02:30 | 3.5 |
| 1970-01-01T00:03:00 | -0.4000000000000057 |
+---------------------+---------------------+
name: cpu
tags: cpu=cpu1
+---------------------+----------------------+
| time | derivative |
+---------------------+----------------------+
| 1970-01-01T00:02:00 | 0.20000000000000284 |
| 1970-01-01T00:02:30 | 0.0 |
| 1970-01-01T00:03:00 | -0.10000000000000853 |
+---------------------+----------------------+
-- InfluxQL: SELECT derivative(first(usage_idle), 500ms) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;
name: cpu
tags: cpu=cpu0
+---------------------+-----------------------+
| time | derivative |
+---------------------+-----------------------+
| 1970-01-01T00:02:00 | -0.013333333333333286 |
| 1970-01-01T00:02:30 | 0.058333333333333334 |
| 1970-01-01T00:03:00 | -0.006666666666666762 |
+---------------------+-----------------------+
name: cpu
tags: cpu=cpu1
+---------------------+------------------------+
| time | derivative |
+---------------------+------------------------+
| 1970-01-01T00:02:00 | 0.003333333333333381 |
| 1970-01-01T00:02:30 | 0.0 |
| 1970-01-01T00:03:00 | -0.0016666666666668088 |
+---------------------+------------------------+
-- InfluxQL: SELECT non_negative_derivative(writes) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001;
name: diskio
+---------------------+-------------------------+
@ -918,6 +1222,152 @@ tags: cpu=cpu1
+---------------------+-------------------------+
| 1970-01-01T00:02:00 | 0.006111111111111237 |
+---------------------+-------------------------+
-- InfluxQL: SELECT non_negative_derivative(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s);
name: diskio
+---------------------+-------------------------+
| time | non_negative_derivative |
+---------------------+-------------------------+
| 1970-01-01T00:02:20 | 82.0 |
| 1970-01-01T00:02:27 | 187.0 |
| 1970-01-01T00:02:34 | 112.0 |
| 1970-01-01T00:02:48 | 55.0 |
| 1970-01-01T00:02:55 | 219.0 |
| 1970-01-01T00:03:09 | 37.5 |
| 1970-01-01T00:03:16 | 76.0 |
| 1970-01-01T00:03:30 | 73.0 |
+---------------------+-------------------------+
-- InfluxQL: SELECT non_negative_derivative(first(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s);
name: diskio
+---------------------+-------------------------+
| time | non_negative_derivative |
+---------------------+-------------------------+
| 1970-01-01T00:02:20 | 5.857142857142857 |
| 1970-01-01T00:02:27 | 13.357142857142858 |
| 1970-01-01T00:02:34 | 8.0 |
| 1970-01-01T00:02:48 | 3.9285714285714284 |
| 1970-01-01T00:02:55 | 15.642857142857142 |
| 1970-01-01T00:03:09 | 2.6785714285714284 |
| 1970-01-01T00:03:16 | 5.428571428571429 |
| 1970-01-01T00:03:30 | 5.214285714285714 |
+---------------------+-------------------------+
-- InfluxQL: SELECT non_negative_derivative(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(30s);
name: diskio
+---------------------+-------------------------+
| time | non_negative_derivative |
+---------------------+-------------------------+
| 1970-01-01T00:02:00 | 366.0 |
| 1970-01-01T00:02:30 | 421.0 |
| 1970-01-01T00:03:00 | 441.0 |
| 1970-01-01T00:03:30 | 297.0 |
+---------------------+-------------------------+
-- InfluxQL: SELECT non_negative_derivative(first(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(30s);
name: diskio
+---------------------+-------------------------+
| time | non_negative_derivative |
+---------------------+-------------------------+
| 1970-01-01T00:02:00 | 6.1 |
| 1970-01-01T00:02:30 | 7.016666666666667 |
| 1970-01-01T00:03:00 | 7.35 |
| 1970-01-01T00:03:30 | 4.95 |
+---------------------+-------------------------+
-- InfluxQL: SELECT non_negative_derivative(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(0);
name: diskio
+---------------------+-------------------------+
| time | non_negative_derivative |
+---------------------+-------------------------+
| 1970-01-01T00:02:06 | 5592646.0 |
| 1970-01-01T00:02:20 | 5592810.0 |
| 1970-01-01T00:02:27 | 187.0 |
| 1970-01-01T00:02:34 | 112.0 |
| 1970-01-01T00:02:48 | 5593219.0 |
| 1970-01-01T00:02:55 | 219.0 |
| 1970-01-01T00:03:09 | 5593513.0 |
| 1970-01-01T00:03:16 | 76.0 |
| 1970-01-01T00:03:30 | 5593735.0 |
+---------------------+-------------------------+
-- InfluxQL: SELECT non_negative_derivative(first(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(0);
name: diskio
+---------------------+-------------------------+
| time | non_negative_derivative |
+---------------------+-------------------------+
| 1970-01-01T00:02:06 | 399474.71428571426 |
| 1970-01-01T00:02:20 | 399486.4285714286 |
| 1970-01-01T00:02:27 | 13.357142857142858 |
| 1970-01-01T00:02:34 | 8.0 |
| 1970-01-01T00:02:48 | 399515.64285714284 |
| 1970-01-01T00:02:55 | 15.642857142857142 |
| 1970-01-01T00:03:09 | 399536.64285714284 |
| 1970-01-01T00:03:16 | 5.428571428571429 |
| 1970-01-01T00:03:30 | 399552.5 |
+---------------------+-------------------------+
-- InfluxQL: SELECT non_negative_derivative(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(previous);
name: diskio
+---------------------+-------------------------+
| time | non_negative_derivative |
+---------------------+-------------------------+
| 1970-01-01T00:02:13 | 0.0 |
| 1970-01-01T00:02:20 | 164.0 |
| 1970-01-01T00:02:27 | 187.0 |
| 1970-01-01T00:02:34 | 112.0 |
| 1970-01-01T00:02:41 | 0.0 |
| 1970-01-01T00:02:48 | 110.0 |
| 1970-01-01T00:02:55 | 219.0 |
| 1970-01-01T00:03:02 | 0.0 |
| 1970-01-01T00:03:09 | 75.0 |
| 1970-01-01T00:03:16 | 76.0 |
| 1970-01-01T00:03:23 | 0.0 |
| 1970-01-01T00:03:30 | 146.0 |
+---------------------+-------------------------+
-- InfluxQL: SELECT non_negative_derivative(first(writes), 500ms) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(previous);
name: diskio
+---------------------+-------------------------+
| time | non_negative_derivative |
+---------------------+-------------------------+
| 1970-01-01T00:02:13 | 0.0 |
| 1970-01-01T00:02:20 | 11.714285714285714 |
| 1970-01-01T00:02:27 | 13.357142857142858 |
| 1970-01-01T00:02:34 | 8.0 |
| 1970-01-01T00:02:41 | 0.0 |
| 1970-01-01T00:02:48 | 7.857142857142857 |
| 1970-01-01T00:02:55 | 15.642857142857142 |
| 1970-01-01T00:03:02 | 0.0 |
| 1970-01-01T00:03:09 | 5.357142857142857 |
| 1970-01-01T00:03:16 | 5.428571428571429 |
| 1970-01-01T00:03:23 | 0.0 |
| 1970-01-01T00:03:30 | 10.428571428571429 |
+---------------------+-------------------------+
-- InfluxQL: SELECT non_negative_derivative(first(usage_idle)) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;
name: cpu
tags: cpu=cpu0
+---------------------+-------------------------+
| time | non_negative_derivative |
+---------------------+-------------------------+
| 1970-01-01T00:02:30 | 3.5 |
+---------------------+-------------------------+
name: cpu
tags: cpu=cpu1
+---------------------+-------------------------+
| time | non_negative_derivative |
+---------------------+-------------------------+
| 1970-01-01T00:02:00 | 0.20000000000000284 |
| 1970-01-01T00:02:30 | 0.0 |
+---------------------+-------------------------+
-- InfluxQL: SELECT non_negative_derivative(first(usage_idle), 500ms) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;
name: cpu
tags: cpu=cpu0
+---------------------+-------------------------+
| time | non_negative_derivative |
+---------------------+-------------------------+
| 1970-01-01T00:02:30 | 0.058333333333333334 |
+---------------------+-------------------------+
name: cpu
tags: cpu=cpu1
+---------------------+-------------------------+
| time | non_negative_derivative |
+---------------------+-------------------------+
| 1970-01-01T00:02:00 | 0.003333333333333381 |
| 1970-01-01T00:02:30 | 0.0 |
+---------------------+-------------------------+
-- InfluxQL: SELECT cumulative_sum(writes) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001;
name: diskio
+---------------------+----------------+
@ -1093,4 +1543,86 @@ tags: cpu=cpu1
| 1970-01-01T00:02:00 | 99.85 |
| 1970-01-01T00:02:30 | 199.68333333333334 |
| 1970-01-01T00:03:00 | 299.48333333333335 |
+---------------------+--------------------+
+---------------------+--------------------+
-- InfluxQL: SELECT cumulative_sum(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s);
name: diskio
+---------------------+----------------+
| time | cumulative_sum |
+---------------------+----------------+
| 1970-01-01T00:02:06 | 5592646 |
| 1970-01-01T00:02:20 | 11185456 |
| 1970-01-01T00:02:27 | 16778453 |
| 1970-01-01T00:02:34 | 22371562 |
| 1970-01-01T00:02:48 | 27964781 |
| 1970-01-01T00:02:55 | 33558219 |
| 1970-01-01T00:03:09 | 39151732 |
| 1970-01-01T00:03:16 | 44745321 |
| 1970-01-01T00:03:30 | 50339056 |
+---------------------+----------------+
-- InfluxQL: SELECT cumulative_sum(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(30s);
name: diskio
+---------------------+----------------+
| time | cumulative_sum |
+---------------------+----------------+
| 1970-01-01T00:02:00 | 5592646 |
| 1970-01-01T00:02:30 | 11185643 |
| 1970-01-01T00:03:00 | 16779081 |
| 1970-01-01T00:03:30 | 22372816 |
+---------------------+----------------+
-- InfluxQL: SELECT cumulative_sum(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(0);
name: diskio
+---------------------+----------------+
| time | cumulative_sum |
+---------------------+----------------+
| 1970-01-01T00:02:06 | 5592646 |
| 1970-01-01T00:02:13 | 5592646 |
| 1970-01-01T00:02:20 | 11185456 |
| 1970-01-01T00:02:27 | 16778453 |
| 1970-01-01T00:02:34 | 22371562 |
| 1970-01-01T00:02:41 | 22371562 |
| 1970-01-01T00:02:48 | 27964781 |
| 1970-01-01T00:02:55 | 33558219 |
| 1970-01-01T00:03:02 | 33558219 |
| 1970-01-01T00:03:09 | 39151732 |
| 1970-01-01T00:03:16 | 44745321 |
| 1970-01-01T00:03:23 | 44745321 |
| 1970-01-01T00:03:30 | 50339056 |
+---------------------+----------------+
-- InfluxQL: SELECT cumulative_sum(first(writes)) FROM diskio WHERE time >= 0000000130000000000 AND time < 0000000210000000001 GROUP BY time(7s) fill(previous);
name: diskio
+---------------------+----------------+
| time | cumulative_sum |
+---------------------+----------------+
| 1970-01-01T00:02:06 | 5592646 |
| 1970-01-01T00:02:13 | 11185292 |
| 1970-01-01T00:02:20 | 16778102 |
| 1970-01-01T00:02:27 | 22371099 |
| 1970-01-01T00:02:34 | 27964208 |
| 1970-01-01T00:02:41 | 33557317 |
| 1970-01-01T00:02:48 | 39150536 |
| 1970-01-01T00:02:55 | 44743974 |
| 1970-01-01T00:03:02 | 50337412 |
| 1970-01-01T00:03:09 | 55930925 |
| 1970-01-01T00:03:16 | 61524514 |
| 1970-01-01T00:03:23 | 67118103 |
| 1970-01-01T00:03:30 | 72711838 |
+---------------------+----------------+
-- InfluxQL: SELECT cumulative_sum(first(usage_idle)) FROM cpu WHERE time >= 0000000130000000000 AND time < 0000000210000000001 AND cpu =~ /^cpu(0|1)$/ GROUP BY TIME(30s), cpu;
name: cpu
tags: cpu=cpu0
+---------------------+----------------+
| time | cumulative_sum |
+---------------------+----------------+
| 1970-01-01T00:02:00 | 89.8 |
| 1970-01-01T00:02:30 | 180.2 |
| 1970-01-01T00:03:00 | 270.2 |
+---------------------+----------------+
name: cpu
tags: cpu=cpu1
+---------------------+----------------+
| time | cumulative_sum |
+---------------------+----------------+
| 1970-01-01T00:02:00 | 99.8 |
| 1970-01-01T00:02:30 | 199.7 |
| 1970-01-01T00:03:00 | 299.5 |
+---------------------+----------------+

View File

@ -2,9 +2,7 @@ use std::{collections::HashMap, sync::Arc, time::Duration};
use async_trait::async_trait;
use backoff::BackoffConfig;
use data_types::{
NamespaceId, Partition, PartitionHashId, PartitionId, PartitionKey, SequenceNumber, TableId,
};
use data_types::{NamespaceId, Partition, PartitionHashId, PartitionId, PartitionKey, TableId};
use iox_catalog::interface::Catalog;
use observability_deps::tracing::debug;
use parking_lot::Mutex;
@ -222,6 +220,7 @@ mod tests {
// Harmless in tests - saves a bunch of extra vars.
#![allow(clippy::await_holding_lock)]
use data_types::PartitionId;
use iox_catalog::mem::MemCatalog;
use super::*;

View File

@ -6,7 +6,6 @@ use std::{
},
};
use arrow::compute::kernels::partition;
use async_trait::async_trait;
use data_types::{NamespaceId, PartitionKey, TableId};
use futures::{future::Shared, FutureExt};
@ -25,11 +24,10 @@ use super::PartitionProvider;
type BoxedResolveFuture =
Pin<Box<dyn std::future::Future<Output = Arc<Mutex<PartitionData>>> + Send>>;
/// A compound key of `(namespace, table, partition_key)` which uniquely
/// A compound key of `(table, partition_key)` which uniquely
/// identifies a single partition.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
struct Key {
namespace_id: NamespaceId,
table_id: TableId,
partition_key: PartitionKey,
}
@ -149,7 +147,6 @@ where
table: Arc<DeferredLoad<TableMetadata>>,
) -> Arc<Mutex<PartitionData>> {
let key = Key {
namespace_id,
table_id,
partition_key: partition_key.clone(), // Ref-counted anyway!
};
@ -267,12 +264,11 @@ mod tests {
use assert_matches::assert_matches;
use futures::Future;
use futures::{stream::FuturesUnordered, StreamExt};
use lazy_static::lazy_static;
use test_helpers::timeout::FutureTimeout;
use tokio::sync::{Notify, Semaphore};
use crate::{
buffer_tree::partition::{resolver::mock::MockPartitionProvider, SortKeyState},
buffer_tree::partition::resolver::mock::MockPartitionProvider,
test_util::{
defer_namespace_name_1_sec, defer_table_metadata_1_sec, PartitionDataBuilder,
ARBITRARY_NAMESPACE_ID, ARBITRARY_PARTITION_KEY, ARBITRARY_TABLE_ID,

View File

@ -2,8 +2,6 @@
//!
//! [`PartitionData`]: crate::buffer_tree::partition::PartitionData
#![allow(unused_imports)] // Transition time only.
mod cache;
pub(crate) use cache::*;

View File

@ -49,11 +49,11 @@ where
#[cfg(test)]
mod tests {
use std::{sync::Arc, time::Duration};
use std::sync::Arc;
use super::*;
use crate::{
buffer_tree::partition::{resolver::mock::MockPartitionProvider, SortKeyState},
buffer_tree::partition::resolver::mock::MockPartitionProvider,
test_util::{
defer_namespace_name_1_sec, defer_table_metadata_1_sec, PartitionDataBuilder,
ARBITRARY_NAMESPACE_ID, ARBITRARY_PARTITION_ID, ARBITRARY_PARTITION_KEY,

View File

@ -998,12 +998,8 @@ mod tests {
assert_eq!(m, 1, "tables counter mismatch");
}
/// Assert that multiple writes to a single namespace/table results in a
/// single namespace being created, and matching metrics.
#[tokio::test]
async fn test_partition_iter() {
// Configure the mock partition provider to return a single partition, named
// p1.
let partition_provider = Arc::new(
MockPartitionProvider::default()
.with_partition(

View File

@ -1323,18 +1323,25 @@ impl<'a> InfluxQLToLogicalPlan<'a> {
_ => None,
};
// Some aggregates, such as COUNT, should be filled with zero by default
// rather than NULL.
let should_zero_fill_expr = fields
.iter()
.map(is_zero_filled_aggregate_field)
.collect::<Vec<_>>();
// Rewrite the aggregate columns from the projection, so that the expressions
// refer to the columns from the aggregate projection
let select_exprs_post_aggr = select_exprs
.iter()
.zip(should_fill_expr)
.map(|(expr, should_fill)| {
.zip(should_fill_expr.iter().zip(should_zero_fill_expr))
.map(|(expr, (should_fill, should_zero_fill))| {
// This implements the `FILL(<value>)` strategy, by coalescing any aggregate
// expressions to `<value>` when they are `NULL`.
let fill_if_null = if fill_if_null.is_some() && should_fill {
fill_if_null
} else {
None
let fill_if_null = match (fill_if_null, should_fill, should_zero_fill) {
(Some(_), true, _) => fill_if_null,
(None, true, true) => Some(0.into()),
_ => None,
};
rebase_expr(expr, &aggr_projection_exprs, &fill_if_null, &plan)
@ -3081,6 +3088,16 @@ fn is_aggregate_field(f: &Field) -> bool {
.is_break()
}
/// A utility function that checks whether `f` is an aggregate field
/// that should be filled with a 0 rather than an NULL.
fn is_zero_filled_aggregate_field(f: &Field) -> bool {
walk_expr(&f.expr, &mut |e| match e {
IQLExpr::Call(Call { name, .. }) if name == "count" => ControlFlow::Break(()),
_ => ControlFlow::Continue(()),
})
.is_break()
}
fn conditional_op_to_operator(op: ConditionalOperator) -> Result<Operator> {
match op {
ConditionalOperator::Eq => Ok(Operator::Eq),
@ -4018,6 +4035,19 @@ mod test {
Filter: cpu.time <= TimestampNanosecond(1672531200000000000, None) [cpu:Dictionary(Int32, Utf8);N, host:Dictionary(Int32, Utf8);N, region:Dictionary(Int32, Utf8);N, time:Timestamp(Nanosecond, None), usage_idle:Float64;N, usage_system:Float64;N, usage_user:Float64;N]
TableScan: cpu [cpu:Dictionary(Int32, Utf8);N, host:Dictionary(Int32, Utf8);N, region:Dictionary(Int32, Utf8);N, time:Timestamp(Nanosecond, None), usage_idle:Float64;N, usage_system:Float64;N, usage_user:Float64;N]
"###);
// selector
assert_snapshot!(plan("SELECT NON_NEGATIVE_DERIVATIVE(LAST(usage_idle)) FROM cpu GROUP BY TIME(10s)"), @r###"
Sort: time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, non_negative_derivative:Float64;N]
Projection: Dictionary(Int32, Utf8("cpu")) AS iox::measurement, time, non_negative_derivative [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, non_negative_derivative:Float64;N]
Filter: NOT non_negative_derivative IS NULL [time:Timestamp(Nanosecond, None);N, non_negative_derivative:Float64;N]
Projection: time, non_negative_derivative(selector_last(cpu.usage_idle,cpu.time)[value]) AS non_negative_derivative [time:Timestamp(Nanosecond, None);N, non_negative_derivative:Float64;N]
WindowAggr: windowExpr=[[non_negative_derivative((selector_last(cpu.usage_idle,cpu.time))[value], IntervalMonthDayNano("10000000000"), time) ORDER BY [time ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING AS non_negative_derivative(selector_last(cpu.usage_idle,cpu.time)[value])]] [time:Timestamp(Nanosecond, None);N, selector_last(cpu.usage_idle,cpu.time):Struct([Field { name: "value", data_type: Float64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }, Field { name: "time", data_type: Timestamp(Nanosecond, None), nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }]);N, non_negative_derivative(selector_last(cpu.usage_idle,cpu.time)[value]):Float64;N]
GapFill: groupBy=[time], aggr=[[selector_last(cpu.usage_idle,cpu.time)]], time_column=time, stride=IntervalMonthDayNano("10000000000"), range=Unbounded..Included(Literal(TimestampNanosecond(1672531200000000000, None))) [time:Timestamp(Nanosecond, None);N, selector_last(cpu.usage_idle,cpu.time):Struct([Field { name: "value", data_type: Float64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }, Field { name: "time", data_type: Timestamp(Nanosecond, None), nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }]);N]
Aggregate: groupBy=[[date_bin(IntervalMonthDayNano("10000000000"), cpu.time, TimestampNanosecond(0, None)) AS time]], aggr=[[selector_last(cpu.usage_idle, cpu.time)]] [time:Timestamp(Nanosecond, None);N, selector_last(cpu.usage_idle,cpu.time):Struct([Field { name: "value", data_type: Float64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }, Field { name: "time", data_type: Timestamp(Nanosecond, None), nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }]);N]
Filter: cpu.time <= TimestampNanosecond(1672531200000000000, None) [cpu:Dictionary(Int32, Utf8);N, host:Dictionary(Int32, Utf8);N, region:Dictionary(Int32, Utf8);N, time:Timestamp(Nanosecond, None), usage_idle:Float64;N, usage_system:Float64;N, usage_user:Float64;N]
TableScan: cpu [cpu:Dictionary(Int32, Utf8);N, host:Dictionary(Int32, Utf8);N, region:Dictionary(Int32, Utf8);N, time:Timestamp(Nanosecond, None), usage_idle:Float64;N, usage_system:Float64;N, usage_user:Float64;N]
"###);
}
#[test]
@ -4078,7 +4108,7 @@ mod test {
"###);
assert_snapshot!(plan("SELECT COUNT(DISTINCT usage_idle) FROM cpu"), @r###"
Sort: time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), count:Int64;N]
Projection: Dictionary(Int32, Utf8("cpu")) AS iox::measurement, TimestampNanosecond(0, None) AS time, COUNT(DISTINCT cpu.usage_idle) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), count:Int64;N]
Projection: Dictionary(Int32, Utf8("cpu")) AS iox::measurement, TimestampNanosecond(0, None) AS time, coalesce_struct(COUNT(DISTINCT cpu.usage_idle), Int64(0)) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), count:Int64;N]
Aggregate: groupBy=[[]], aggr=[[COUNT(DISTINCT cpu.usage_idle)]] [COUNT(DISTINCT cpu.usage_idle):Int64;N]
TableScan: cpu [cpu:Dictionary(Int32, Utf8);N, host:Dictionary(Int32, Utf8);N, region:Dictionary(Int32, Utf8);N, time:Timestamp(Nanosecond, None), usage_idle:Float64;N, usage_system:Float64;N, usage_user:Float64;N]
"###);
@ -4149,7 +4179,7 @@ mod test {
fn test_selectors_and_aggregate() {
assert_snapshot!(plan("SELECT LAST(usage_idle), COUNT(usage_idle) FROM cpu"), @r###"
Sort: time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), last:Float64;N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("cpu")) AS iox::measurement, TimestampNanosecond(0, None) AS time, (selector_last(cpu.usage_idle,cpu.time))[value] AS last, COUNT(cpu.usage_idle) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), last:Float64;N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("cpu")) AS iox::measurement, TimestampNanosecond(0, None) AS time, (selector_last(cpu.usage_idle,cpu.time))[value] AS last, coalesce_struct(COUNT(cpu.usage_idle), Int64(0)) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), last:Float64;N, count:Int64;N]
Aggregate: groupBy=[[]], aggr=[[selector_last(cpu.usage_idle, cpu.time), COUNT(cpu.usage_idle)]] [selector_last(cpu.usage_idle,cpu.time):Struct([Field { name: "value", data_type: Float64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }, Field { name: "time", data_type: Timestamp(Nanosecond, None), nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }]);N, COUNT(cpu.usage_idle):Int64;N]
TableScan: cpu [cpu:Dictionary(Int32, Utf8);N, host:Dictionary(Int32, Utf8);N, region:Dictionary(Int32, Utf8);N, time:Timestamp(Nanosecond, None), usage_idle:Float64;N, usage_system:Float64;N, usage_user:Float64;N]
"###);
@ -4828,20 +4858,20 @@ mod test {
fn no_group_by() {
assert_snapshot!(plan("SELECT COUNT(f64_field) FROM data"), @r###"
Sort: time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, TimestampNanosecond(0, None) AS time, COUNT(data.f64_field) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, TimestampNanosecond(0, None) AS time, coalesce_struct(COUNT(data.f64_field), Int64(0)) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), count:Int64;N]
Aggregate: groupBy=[[]], aggr=[[COUNT(data.f64_field)]] [COUNT(data.f64_field):Int64;N]
TableScan: data [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
"###);
assert_snapshot!(plan("SELECT COUNT(f64_field) FROM data GROUP BY non_existent"), @r###"
Sort: time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), non_existent:Null;N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, TimestampNanosecond(0, None) AS time, NULL AS non_existent, COUNT(data.f64_field) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), non_existent:Null;N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, TimestampNanosecond(0, None) AS time, NULL AS non_existent, coalesce_struct(COUNT(data.f64_field), Int64(0)) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), non_existent:Null;N, count:Int64;N]
Aggregate: groupBy=[[]], aggr=[[COUNT(data.f64_field)]] [COUNT(data.f64_field):Int64;N]
TableScan: data [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
"###);
assert_snapshot!(plan("SELECT COUNT(f64_field) FROM data GROUP BY foo"), @r###"
Sort: foo ASC NULLS LAST, time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Dictionary(Int32, Utf8);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, TimestampNanosecond(0, None) AS time, data.foo AS foo, COUNT(data.f64_field) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Dictionary(Int32, Utf8);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, TimestampNanosecond(0, None) AS time, data.foo AS foo, coalesce_struct(COUNT(data.f64_field), Int64(0)) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Dictionary(Int32, Utf8);N, count:Int64;N]
Aggregate: groupBy=[[data.foo]], aggr=[[COUNT(data.f64_field)]] [foo:Dictionary(Int32, Utf8);N, COUNT(data.f64_field):Int64;N]
TableScan: data [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
"###);
@ -4849,7 +4879,7 @@ mod test {
// The `COUNT(f64_field)` aggregate is only projected ones in the Aggregate and reused in the projection
assert_snapshot!(plan("SELECT COUNT(f64_field), COUNT(f64_field) + COUNT(f64_field), COUNT(f64_field) * 3 FROM data"), @r###"
Sort: time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), count:Int64;N, count_count:Int64;N, count_1:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, TimestampNanosecond(0, None) AS time, COUNT(data.f64_field) AS count, COUNT(data.f64_field) + COUNT(data.f64_field) AS count_count, COUNT(data.f64_field) * Int64(3) AS count_1 [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), count:Int64;N, count_count:Int64;N, count_1:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, TimestampNanosecond(0, None) AS time, coalesce_struct(COUNT(data.f64_field), Int64(0)) AS count, coalesce_struct(COUNT(data.f64_field), Int64(0)) + coalesce_struct(COUNT(data.f64_field), Int64(0)) AS count_count, coalesce_struct(COUNT(data.f64_field), Int64(0)) * Int64(3) AS count_1 [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), count:Int64;N, count_count:Int64;N, count_1:Int64;N]
Aggregate: groupBy=[[]], aggr=[[COUNT(data.f64_field)]] [COUNT(data.f64_field):Int64;N]
TableScan: data [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
"###);
@ -4857,7 +4887,7 @@ mod test {
// non-existent tags are excluded from the Aggregate groupBy and Sort operators
assert_snapshot!(plan("SELECT COUNT(f64_field) FROM data GROUP BY foo, non_existent"), @r###"
Sort: foo ASC NULLS LAST, time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Dictionary(Int32, Utf8);N, non_existent:Null;N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, TimestampNanosecond(0, None) AS time, data.foo AS foo, NULL AS non_existent, COUNT(data.f64_field) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Dictionary(Int32, Utf8);N, non_existent:Null;N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, TimestampNanosecond(0, None) AS time, data.foo AS foo, NULL AS non_existent, coalesce_struct(COUNT(data.f64_field), Int64(0)) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Dictionary(Int32, Utf8);N, non_existent:Null;N, count:Int64;N]
Aggregate: groupBy=[[data.foo]], aggr=[[COUNT(data.f64_field)]] [foo:Dictionary(Int32, Utf8);N, COUNT(data.f64_field):Int64;N]
TableScan: data [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
"###);
@ -4865,7 +4895,7 @@ mod test {
// Aggregate expression is projected once and reused in final projection
assert_snapshot!(plan("SELECT COUNT(f64_field), COUNT(f64_field) * 2 FROM data"), @r###"
Sort: time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), count:Int64;N, count_1:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, TimestampNanosecond(0, None) AS time, COUNT(data.f64_field) AS count, COUNT(data.f64_field) * Int64(2) AS count_1 [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), count:Int64;N, count_1:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, TimestampNanosecond(0, None) AS time, coalesce_struct(COUNT(data.f64_field), Int64(0)) AS count, coalesce_struct(COUNT(data.f64_field), Int64(0)) * Int64(2) AS count_1 [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), count:Int64;N, count_1:Int64;N]
Aggregate: groupBy=[[]], aggr=[[COUNT(data.f64_field)]] [COUNT(data.f64_field):Int64;N]
TableScan: data [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
"###);
@ -4904,7 +4934,7 @@ mod test {
fn group_by_time() {
assert_snapshot!(plan("SELECT COUNT(f64_field) FROM data GROUP BY TIME(10s) FILL(none)"), @r###"
Sort: time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, COUNT(data.f64_field) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, coalesce_struct(COUNT(data.f64_field), Int64(0)) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Aggregate: groupBy=[[date_bin(IntervalMonthDayNano("10000000000"), data.time, TimestampNanosecond(0, None)) AS time]], aggr=[[COUNT(data.f64_field)]] [time:Timestamp(Nanosecond, None);N, COUNT(data.f64_field):Int64;N]
Filter: data.time <= TimestampNanosecond(1672531200000000000, None) [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
TableScan: data [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
@ -4913,7 +4943,7 @@ mod test {
// supports offset parameter
assert_snapshot!(plan("SELECT COUNT(f64_field) FROM data GROUP BY TIME(10s, 5s) FILL(none)"), @r###"
Sort: time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, COUNT(data.f64_field) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, coalesce_struct(COUNT(data.f64_field), Int64(0)) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Aggregate: groupBy=[[date_bin(IntervalMonthDayNano("10000000000"), data.time, TimestampNanosecond(5000000000, None)) AS time]], aggr=[[COUNT(data.f64_field)]] [time:Timestamp(Nanosecond, None);N, COUNT(data.f64_field):Int64;N]
Filter: data.time <= TimestampNanosecond(1672531200000000000, None) [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
TableScan: data [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
@ -4925,7 +4955,7 @@ mod test {
// No time bounds
assert_snapshot!(plan("SELECT COUNT(f64_field) FROM data GROUP BY TIME(10s)"), @r###"
Sort: time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, COUNT(data.f64_field) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, coalesce_struct(COUNT(data.f64_field), Int64(0)) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
GapFill: groupBy=[time], aggr=[[COUNT(data.f64_field)]], time_column=time, stride=IntervalMonthDayNano("10000000000"), range=Unbounded..Included(Literal(TimestampNanosecond(1672531200000000000, None))) [time:Timestamp(Nanosecond, None);N, COUNT(data.f64_field):Int64;N]
Aggregate: groupBy=[[date_bin(IntervalMonthDayNano("10000000000"), data.time, TimestampNanosecond(0, None)) AS time]], aggr=[[COUNT(data.f64_field)]] [time:Timestamp(Nanosecond, None);N, COUNT(data.f64_field):Int64;N]
Filter: data.time <= TimestampNanosecond(1672531200000000000, None) [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
@ -4938,7 +4968,7 @@ mod test {
// No lower time bounds
assert_snapshot!(plan("SELECT COUNT(f64_field) FROM data WHERE time < '2022-10-31T02:02:00Z' GROUP BY TIME(10s)"), @r###"
Sort: time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, COUNT(data.f64_field) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, coalesce_struct(COUNT(data.f64_field), Int64(0)) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
GapFill: groupBy=[time], aggr=[[COUNT(data.f64_field)]], time_column=time, stride=IntervalMonthDayNano("10000000000"), range=Unbounded..Included(Literal(TimestampNanosecond(1667181719999999999, None))) [time:Timestamp(Nanosecond, None);N, COUNT(data.f64_field):Int64;N]
Aggregate: groupBy=[[date_bin(IntervalMonthDayNano("10000000000"), data.time, TimestampNanosecond(0, None)) AS time]], aggr=[[COUNT(data.f64_field)]] [time:Timestamp(Nanosecond, None);N, COUNT(data.f64_field):Int64;N]
Filter: data.time <= TimestampNanosecond(1667181719999999999, None) [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
@ -4951,7 +4981,7 @@ mod test {
// No upper time bounds
assert_snapshot!(plan("SELECT COUNT(f64_field) FROM data WHERE time >= '2022-10-31T02:00:00Z' GROUP BY TIME(10s)"), @r###"
Sort: time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, COUNT(data.f64_field) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, coalesce_struct(COUNT(data.f64_field), Int64(0)) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
GapFill: groupBy=[time], aggr=[[COUNT(data.f64_field)]], time_column=time, stride=IntervalMonthDayNano("10000000000"), range=Included(Literal(TimestampNanosecond(1667181600000000000, None)))..Included(Literal(TimestampNanosecond(1672531200000000000, None))) [time:Timestamp(Nanosecond, None);N, COUNT(data.f64_field):Int64;N]
Aggregate: groupBy=[[date_bin(IntervalMonthDayNano("10000000000"), data.time, TimestampNanosecond(0, None)) AS time]], aggr=[[COUNT(data.f64_field)]] [time:Timestamp(Nanosecond, None);N, COUNT(data.f64_field):Int64;N]
Filter: data.time >= TimestampNanosecond(1667181600000000000, None) AND data.time <= TimestampNanosecond(1672531200000000000, None) [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
@ -4964,7 +4994,7 @@ mod test {
// Default is FILL(null)
assert_snapshot!(plan("SELECT COUNT(f64_field) FROM data WHERE time >= '2022-10-31T02:00:00Z' AND time < '2022-10-31T02:02:00Z' GROUP BY TIME(10s)"), @r###"
Sort: time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, COUNT(data.f64_field) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, coalesce_struct(COUNT(data.f64_field), Int64(0)) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
GapFill: groupBy=[time], aggr=[[COUNT(data.f64_field)]], time_column=time, stride=IntervalMonthDayNano("10000000000"), range=Included(Literal(TimestampNanosecond(1667181600000000000, None)))..Included(Literal(TimestampNanosecond(1667181719999999999, None))) [time:Timestamp(Nanosecond, None);N, COUNT(data.f64_field):Int64;N]
Aggregate: groupBy=[[date_bin(IntervalMonthDayNano("10000000000"), data.time, TimestampNanosecond(0, None)) AS time]], aggr=[[COUNT(data.f64_field)]] [time:Timestamp(Nanosecond, None);N, COUNT(data.f64_field):Int64;N]
Filter: data.time >= TimestampNanosecond(1667181600000000000, None) AND data.time <= TimestampNanosecond(1667181719999999999, None) [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
@ -4976,7 +5006,7 @@ mod test {
fn group_by_time_gapfill_default_is_fill_null1() {
assert_snapshot!(plan("SELECT COUNT(f64_field) FROM data GROUP BY TIME(10s)"), @r###"
Sort: time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, COUNT(data.f64_field) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, coalesce_struct(COUNT(data.f64_field), Int64(0)) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
GapFill: groupBy=[time], aggr=[[COUNT(data.f64_field)]], time_column=time, stride=IntervalMonthDayNano("10000000000"), range=Unbounded..Included(Literal(TimestampNanosecond(1672531200000000000, None))) [time:Timestamp(Nanosecond, None);N, COUNT(data.f64_field):Int64;N]
Aggregate: groupBy=[[date_bin(IntervalMonthDayNano("10000000000"), data.time, TimestampNanosecond(0, None)) AS time]], aggr=[[COUNT(data.f64_field)]] [time:Timestamp(Nanosecond, None);N, COUNT(data.f64_field):Int64;N]
Filter: data.time <= TimestampNanosecond(1672531200000000000, None) [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
@ -4988,7 +5018,7 @@ mod test {
fn group_by_time_gapfill_default_is_fill_null2() {
assert_snapshot!(plan("SELECT COUNT(f64_field) FROM data GROUP BY TIME(10s) FILL(null)"), @r###"
Sort: time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, COUNT(data.f64_field) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, coalesce_struct(COUNT(data.f64_field), Int64(0)) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
GapFill: groupBy=[time], aggr=[[COUNT(data.f64_field)]], time_column=time, stride=IntervalMonthDayNano("10000000000"), range=Unbounded..Included(Literal(TimestampNanosecond(1672531200000000000, None))) [time:Timestamp(Nanosecond, None);N, COUNT(data.f64_field):Int64;N]
Aggregate: groupBy=[[date_bin(IntervalMonthDayNano("10000000000"), data.time, TimestampNanosecond(0, None)) AS time]], aggr=[[COUNT(data.f64_field)]] [time:Timestamp(Nanosecond, None);N, COUNT(data.f64_field):Int64;N]
Filter: data.time <= TimestampNanosecond(1672531200000000000, None) [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
@ -5000,7 +5030,7 @@ mod test {
fn group_by_time_gapfill_default_is_fill_null3() {
assert_snapshot!(plan("SELECT COUNT(f64_field) FROM data GROUP BY TIME(10s) FILL(previous)"), @r###"
Sort: time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, COUNT(data.f64_field) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, coalesce_struct(COUNT(data.f64_field), Int64(0)) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
GapFill: groupBy=[time], aggr=[[LOCF(COUNT(data.f64_field))]], time_column=time, stride=IntervalMonthDayNano("10000000000"), range=Unbounded..Included(Literal(TimestampNanosecond(1672531200000000000, None))) [time:Timestamp(Nanosecond, None);N, COUNT(data.f64_field):Int64;N]
Aggregate: groupBy=[[date_bin(IntervalMonthDayNano("10000000000"), data.time, TimestampNanosecond(0, None)) AS time]], aggr=[[COUNT(data.f64_field)]] [time:Timestamp(Nanosecond, None);N, COUNT(data.f64_field):Int64;N]
Filter: data.time <= TimestampNanosecond(1672531200000000000, None) [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
@ -5024,7 +5054,7 @@ mod test {
fn group_by_time_gapfill_default_is_fill_null5() {
assert_snapshot!(plan("SELECT COUNT(f64_field) FROM data GROUP BY TIME(10s) FILL(linear)"), @r###"
Sort: time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, COUNT(data.f64_field) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, coalesce_struct(COUNT(data.f64_field), Int64(0)) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
GapFill: groupBy=[time], aggr=[[INTERPOLATE(COUNT(data.f64_field))]], time_column=time, stride=IntervalMonthDayNano("10000000000"), range=Unbounded..Included(Literal(TimestampNanosecond(1672531200000000000, None))) [time:Timestamp(Nanosecond, None);N, COUNT(data.f64_field):Int64;N]
Aggregate: groupBy=[[date_bin(IntervalMonthDayNano("10000000000"), data.time, TimestampNanosecond(0, None)) AS time]], aggr=[[COUNT(data.f64_field)]] [time:Timestamp(Nanosecond, None);N, COUNT(data.f64_field):Int64;N]
Filter: data.time <= TimestampNanosecond(1672531200000000000, None) [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
@ -5066,7 +5096,7 @@ mod test {
Filter: iox::row <= Int64(1) [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Dictionary(Int32, Utf8);N, count:Int64;N, iox::row:UInt64;N]
WindowAggr: windowExpr=[[ROW_NUMBER() PARTITION BY [foo] ORDER BY [time ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW AS iox::row]] [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Dictionary(Int32, Utf8);N, count:Int64;N, iox::row:UInt64;N]
Sort: foo ASC NULLS LAST, time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Dictionary(Int32, Utf8);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, TimestampNanosecond(0, None) AS time, data.foo AS foo, COUNT(data.f64_field) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Dictionary(Int32, Utf8);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, TimestampNanosecond(0, None) AS time, data.foo AS foo, coalesce_struct(COUNT(data.f64_field), Int64(0)) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Dictionary(Int32, Utf8);N, count:Int64;N]
Aggregate: groupBy=[[data.foo]], aggr=[[COUNT(data.f64_field)]] [foo:Dictionary(Int32, Utf8);N, COUNT(data.f64_field):Int64;N]
TableScan: data [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
"###);
@ -5080,7 +5110,7 @@ mod test {
Filter: iox::row > Int64(1) [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Dictionary(Int32, Utf8);N, count:Int64;N, iox::row:UInt64;N]
WindowAggr: windowExpr=[[ROW_NUMBER() PARTITION BY [foo] ORDER BY [time ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW AS iox::row]] [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Dictionary(Int32, Utf8);N, count:Int64;N, iox::row:UInt64;N]
Sort: foo ASC NULLS LAST, time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Dictionary(Int32, Utf8);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, TimestampNanosecond(0, None) AS time, data.foo AS foo, COUNT(data.f64_field) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Dictionary(Int32, Utf8);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, TimestampNanosecond(0, None) AS time, data.foo AS foo, coalesce_struct(COUNT(data.f64_field), Int64(0)) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Dictionary(Int32, Utf8);N, count:Int64;N]
Aggregate: groupBy=[[data.foo]], aggr=[[COUNT(data.f64_field)]] [foo:Dictionary(Int32, Utf8);N, COUNT(data.f64_field):Int64;N]
TableScan: data [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
"###);
@ -5094,7 +5124,7 @@ mod test {
Filter: iox::row BETWEEN Int64(4) AND Int64(5) [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Dictionary(Int32, Utf8);N, count:Int64;N, iox::row:UInt64;N]
WindowAggr: windowExpr=[[ROW_NUMBER() PARTITION BY [foo] ORDER BY [time ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW AS iox::row]] [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Dictionary(Int32, Utf8);N, count:Int64;N, iox::row:UInt64;N]
Sort: foo ASC NULLS LAST, time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Dictionary(Int32, Utf8);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, TimestampNanosecond(0, None) AS time, data.foo AS foo, COUNT(data.f64_field) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Dictionary(Int32, Utf8);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, TimestampNanosecond(0, None) AS time, data.foo AS foo, coalesce_struct(COUNT(data.f64_field), Int64(0)) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Dictionary(Int32, Utf8);N, count:Int64;N]
Aggregate: groupBy=[[data.foo]], aggr=[[COUNT(data.f64_field)]] [foo:Dictionary(Int32, Utf8);N, COUNT(data.f64_field):Int64;N]
TableScan: data [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
"###);
@ -5120,7 +5150,7 @@ mod test {
fn group_by_time_precision() {
assert_snapshot!(plan("SELECT COUNT(f64_field) FROM data GROUP BY TIME(10u) FILL(none)"), @r###"
Sort: time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, COUNT(data.f64_field) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Projection: Dictionary(Int32, Utf8("data")) AS iox::measurement, time, coalesce_struct(COUNT(data.f64_field), Int64(0)) AS count [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None);N, count:Int64;N]
Aggregate: groupBy=[[date_bin(IntervalMonthDayNano("10000"), data.time, TimestampNanosecond(0, None)) AS time]], aggr=[[COUNT(data.f64_field)]] [time:Timestamp(Nanosecond, None);N, COUNT(data.f64_field):Int64;N]
Filter: data.time <= TimestampNanosecond(1672531200000000000, None) [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
TableScan: data [TIME:Boolean;N, bar:Dictionary(Int32, Utf8);N, bool_field:Boolean;N, f64_field:Float64;N, foo:Dictionary(Int32, Utf8);N, i64_field:Int64;N, mixedCase:Float64;N, str_field:Utf8;N, time:Timestamp(Nanosecond, None), with space:Float64;N]
@ -5378,7 +5408,7 @@ mod test {
"###);
assert_snapshot!(plan("SELECT count(foo) as foo, first(usage_idle) from cpu group by foo"), @r###"
Sort: time ASC NULLS LAST [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Null;N, foo_1:Null;N, first:Float64;N]
Projection: Dictionary(Int32, Utf8("cpu")) AS iox::measurement, TimestampNanosecond(0, None) AS time, NULL AS foo, (selector_first(cpu.usage_idle,cpu.time,NULL))[other_1] AS foo_1, (selector_first(cpu.usage_idle,cpu.time,NULL))[value] AS first [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Null;N, foo_1:Null;N, first:Float64;N]
Projection: Dictionary(Int32, Utf8("cpu")) AS iox::measurement, TimestampNanosecond(0, None) AS time, NULL AS foo, (coalesce_struct(selector_first(cpu.usage_idle,cpu.time,NULL), Struct({value:Float64(0),time:TimestampNanosecond(0, None),other_1:NULL})))[other_1] AS foo_1, (selector_first(cpu.usage_idle,cpu.time,NULL))[value] AS first [iox::measurement:Dictionary(Int32, Utf8), time:Timestamp(Nanosecond, None), foo:Null;N, foo_1:Null;N, first:Float64;N]
Aggregate: groupBy=[[]], aggr=[[selector_first(cpu.usage_idle, cpu.time, NULL)]] [selector_first(cpu.usage_idle,cpu.time,NULL):Struct([Field { name: "value", data_type: Float64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }, Field { name: "time", data_type: Timestamp(Nanosecond, None), nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }, Field { name: "other_1", data_type: Null, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }]);N]
TableScan: cpu [cpu:Dictionary(Int32, Utf8);N, host:Dictionary(Int32, Utf8);N, region:Dictionary(Int32, Utf8);N, time:Timestamp(Nanosecond, None), usage_idle:Float64;N, usage_system:Float64;N, usage_user:Float64;N]
"###);

View File

@ -1029,7 +1029,7 @@ impl FieldChecker {
ProjectionType::TopBottomSelector
} else if self.has_group_by_time {
if self.window_count > 0 {
if self.window_count == self.aggregate_count {
if self.window_count == self.aggregate_count + self.selector_count {
ProjectionType::WindowAggregate
} else {
ProjectionType::WindowAggregateMixed

View File

@ -118,6 +118,7 @@ fn number_to_scalar(n: &Number, data_type: &DataType) -> Result<ScalarValue> {
),
fields.clone(),
),
(_, DataType::Null) => ScalarValue::Null,
(n, data_type) => {
// The only output data types expected are Int64, Float64 or UInt64
return error::internal(format!("no conversion from {n} to {data_type}"));

View File

@ -8,7 +8,11 @@ use cache_system::{
PolicyBackend,
},
cache::{driver::CacheDriver, metrics::CacheWithMetrics, Cache},
loader::{metrics::MetricsLoader, FunctionLoader},
loader::{
batch::{BatchLoader, BatchLoaderFlusher, BatchLoaderFlusherExt},
metrics::MetricsLoader,
FunctionLoader,
},
resource_consumption::FunctionEstimator,
};
use data_types::{
@ -16,17 +20,17 @@ use data_types::{
ColumnId, Partition, PartitionId, TransitionPartitionId,
};
use datafusion::scalar::ScalarValue;
use iox_catalog::{interface::Catalog, partition_lookup};
use iox_catalog::{interface::Catalog, partition_lookup_batch};
use iox_query::chunk_statistics::{ColumnRange, ColumnRanges};
use iox_time::TimeProvider;
use observability_deps::tracing::debug;
use schema::sort::SortKey;
use std::{
collections::{HashMap, HashSet},
collections::{hash_map::Entry, HashMap, HashSet},
mem::{size_of, size_of_val},
sync::Arc,
};
use trace::span::Span;
use trace::span::{Span, SpanRecorder};
use super::{namespace::CachedTable, ram::RamSize};
@ -46,6 +50,7 @@ type CacheT = Box<
pub struct PartitionCache {
cache: CacheT,
remove_if_handle: RemoveIfHandle<PartitionId, Option<CachedPartition>>,
flusher: Arc<dyn BatchLoaderFlusher>,
}
impl PartitionCache {
@ -58,24 +63,59 @@ impl PartitionCache {
ram_pool: Arc<ResourcePool<RamSize>>,
testing: bool,
) -> Self {
let loader =
FunctionLoader::new(move |partition_id: PartitionId, extra: Arc<CachedTable>| {
let loader = FunctionLoader::new(
move |partition_ids: Vec<PartitionId>, cached_tables: Vec<Arc<CachedTable>>| {
// sanity checks
assert_eq!(partition_ids.len(), cached_tables.len());
let catalog = Arc::clone(&catalog);
let backoff_config = backoff_config.clone();
async move {
let partition = Backoff::new(&backoff_config)
// prepare output buffer
let mut out = (0..partition_ids.len()).map(|_| None).collect::<Vec<_>>();
let mut out_map =
HashMap::<PartitionId, usize>::with_capacity(partition_ids.len());
for (idx, id) in partition_ids.iter().enumerate() {
match out_map.entry(*id) {
Entry::Occupied(_) => unreachable!("cache system requested same partition from loader concurrently, this should have been prevented by the CacheDriver"),
Entry::Vacant(v) => {
v.insert(idx);
}
}
}
// build `&[&TransitionPartitionId]` for batch catalog request
let ids = partition_ids
.iter()
.copied()
.map(TransitionPartitionId::Deprecated)
.collect::<Vec<_>>();
let ids = ids.iter().collect::<Vec<_>>();
// fetch catalog data
let partitions = Backoff::new(&backoff_config)
.retry_all_errors("get partition_key", || async {
let mut repos = catalog.repositories().await;
let id = TransitionPartitionId::Deprecated(partition_id);
partition_lookup(repos.as_mut(), &id).await
partition_lookup_batch(repos.as_mut(), &ids).await
})
.await
.expect("retry forever")?;
.expect("retry forever");
Some(CachedPartition::new(partition, &extra))
// build output
for p in partitions {
let idx = out_map[&p.id];
let cached_table = &cached_tables[idx];
let p = CachedPartition::new(p, cached_table);
out[idx] = Some(p);
}
out
}
});
},
);
let loader = Arc::new(BatchLoader::new(loader));
let flusher = Arc::clone(&loader);
let loader = Arc::new(MetricsLoader::new(
loader,
CACHE_ID,
@ -111,51 +151,79 @@ impl PartitionCache {
Self {
cache,
remove_if_handle,
flusher,
}
}
/// Get cached partition.
///
/// The result only contains existing partitions. The order is undefined.
///
/// Expire partition if the cached sort key does NOT cover the given set of columns.
pub async fn get(
&self,
cached_table: Arc<CachedTable>,
partition_id: PartitionId,
sort_key_should_cover: &[ColumnId],
partitions: Vec<PartitionRequest>,
span: Option<Span>,
) -> Option<CachedPartition> {
self.remove_if_handle
.remove_if_and_get(
&self.cache,
partition_id,
|cached_partition| {
let invalidates =
if let Some(sort_key) = &cached_partition.and_then(|p| p.sort_key) {
sort_key_should_cover
.iter()
.any(|col| !sort_key.column_set.contains(col))
} else {
// no sort key at all => need to update if there is anything to cover
!sort_key_should_cover.is_empty()
};
) -> Vec<CachedPartition> {
let span_recorder = SpanRecorder::new(span);
if invalidates {
debug!(
partition_id = partition_id.get(),
"invalidate partition cache",
);
}
let futures = partitions
.into_iter()
.map(
|PartitionRequest {
partition_id,
sort_key_should_cover,
}| {
let cached_table = Arc::clone(&cached_table);
let span = span_recorder.child_span("single partition cache lookup");
invalidates
self.remove_if_handle.remove_if_and_get(
&self.cache,
partition_id,
move |cached_partition| {
let invalidates = if let Some(sort_key) =
&cached_partition.and_then(|p| p.sort_key)
{
sort_key_should_cover
.iter()
.any(|col| !sort_key.column_set.contains(col))
} else {
// no sort key at all => need to update if there is anything to cover
!sort_key_should_cover.is_empty()
};
if invalidates {
debug!(
partition_id = partition_id.get(),
"invalidate partition cache",
);
}
invalidates
},
(cached_table, span),
)
},
(cached_table, span),
)
.await
.collect();
let res = self.flusher.auto_flush(futures).await;
res.into_iter().flatten().collect()
}
}
/// Request for [`PartitionCache::get`].
#[derive(Debug)]
pub struct PartitionRequest {
pub partition_id: PartitionId,
pub sort_key_should_cover: Vec<ColumnId>,
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct CachedPartition {
pub id: PartitionId,
pub sort_key: Option<Arc<PartitionSortKey>>,
pub column_ranges: ColumnRanges,
}
@ -231,6 +299,7 @@ impl CachedPartition {
column_ranges.shrink_to_fit();
Self {
id: partition.id,
sort_key,
column_ranges: Arc::new(column_ranges),
}
@ -298,12 +367,15 @@ mod tests {
use crate::cache::{
ram::test_util::test_ram_pool, test_util::assert_catalog_access_metric_count,
};
use async_trait::async_trait;
use data_types::{partition_template::TablePartitionTemplateOverride, ColumnType};
use futures::StreamExt;
use generated_types::influxdata::iox::partition_template::v1::{
template_part::Part, PartitionTemplate, TemplatePart,
};
use iox_tests::TestCatalog;
use iox_tests::{TestCatalog, TestNamespace};
use schema::{Schema, SchemaBuilder};
use tokio::sync::Barrier;
#[tokio::test]
async fn test_sort_key() {
@ -348,7 +420,7 @@ mod tests {
);
let sort_key1a = cache
.get(Arc::clone(&cached_table), p1.id, &Vec::new(), None)
.get_one(Arc::clone(&cached_table), p1.id, &Vec::new(), None)
.await
.unwrap()
.sort_key;
@ -360,18 +432,26 @@ mod tests {
column_order: [c1.column.id, c2.column.id].into(),
}
);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 1);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
1,
);
let sort_key2 = cache
.get(Arc::clone(&cached_table), p2.id, &Vec::new(), None)
.get_one(Arc::clone(&cached_table), p2.id, &Vec::new(), None)
.await
.unwrap()
.sort_key;
assert_eq!(sort_key2, None);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 2);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
2,
);
let sort_key1b = cache
.get(Arc::clone(&cached_table), p1.id, &Vec::new(), None)
.get_one(Arc::clone(&cached_table), p1.id, &Vec::new(), None)
.await
.unwrap()
.sort_key;
@ -379,12 +459,16 @@ mod tests {
sort_key1a.as_ref().unwrap(),
sort_key1b.as_ref().unwrap()
));
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 2);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
2,
);
// non-existing partition
for _ in 0..2 {
let res = cache
.get(
.get_one(
Arc::clone(&cached_table),
PartitionId::new(i64::MAX),
&Vec::new(),
@ -392,7 +476,11 @@ mod tests {
)
.await;
assert_eq!(res, None);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 3);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
3,
);
}
}
@ -461,7 +549,7 @@ mod tests {
);
let ranges1a = cache
.get(Arc::clone(&cached_table), p1.id, &[], None)
.get_one(Arc::clone(&cached_table), p1.id, &[], None)
.await
.unwrap()
.column_ranges;
@ -488,10 +576,14 @@ mod tests {
&ranges1a.get("tag1").unwrap().min_value,
&ranges1a.get("tag1").unwrap().max_value,
));
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 1);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
1,
);
let ranges2 = cache
.get(Arc::clone(&cached_table), p2.id, &[], None)
.get_one(Arc::clone(&cached_table), p2.id, &[], None)
.await
.unwrap()
.column_ranges;
@ -505,10 +597,14 @@ mod tests {
}
),]),
);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 2);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
2,
);
let ranges3 = cache
.get(Arc::clone(&cached_table), p3.id, &[], None)
.get_one(Arc::clone(&cached_table), p3.id, &[], None)
.await
.unwrap()
.column_ranges;
@ -531,10 +627,14 @@ mod tests {
),
]),
);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 3);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
3,
);
let ranges4 = cache
.get(Arc::clone(&cached_table), p4.id, &[], None)
.get_one(Arc::clone(&cached_table), p4.id, &[], None)
.await
.unwrap()
.column_ranges;
@ -557,10 +657,14 @@ mod tests {
),
]),
);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 4);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
4,
);
let ranges5 = cache
.get(Arc::clone(&cached_table), p5.id, &[], None)
.get_one(Arc::clone(&cached_table), p5.id, &[], None)
.await
.unwrap()
.column_ranges;
@ -574,20 +678,28 @@ mod tests {
}
),]),
);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 5);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
5,
);
let ranges1b = cache
.get(Arc::clone(&cached_table), p1.id, &[], None)
.get_one(Arc::clone(&cached_table), p1.id, &[], None)
.await
.unwrap()
.column_ranges;
assert!(Arc::ptr_eq(&ranges1a, &ranges1b));
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 5);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
5,
);
// non-existing partition
for _ in 0..2 {
let res = cache
.get(
.get_one(
Arc::clone(&cached_table),
PartitionId::new(i64::MAX),
&[],
@ -595,7 +707,11 @@ mod tests {
)
.await;
assert_eq!(res, None);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 6);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
6,
);
}
}
@ -635,31 +751,43 @@ mod tests {
);
let sort_key = cache
.get(Arc::clone(&cached_table), p_id, &[], None)
.get_one(Arc::clone(&cached_table), p_id, &[], None)
.await
.unwrap()
.sort_key;
assert_eq!(sort_key, None,);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 1);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
1,
);
// requesting nother will not expire
assert!(p_sort_key.is_none());
let sort_key = cache
.get(Arc::clone(&cached_table), p_id, &[], None)
.get_one(Arc::clone(&cached_table), p_id, &[], None)
.await
.unwrap()
.sort_key;
assert_eq!(sort_key, None,);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 1);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
1,
);
// but requesting something will expire
let sort_key = cache
.get(Arc::clone(&cached_table), p_id, &[c1.column.id], None)
.get_one(Arc::clone(&cached_table), p_id, &[c1.column.id], None)
.await
.unwrap()
.sort_key;
assert_eq!(sort_key, None,);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 2);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
2,
);
// set sort key
let p = p
@ -668,11 +796,12 @@ mod tests {
c2.column.name.as_str(),
]))
.await;
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 1);
// expire & fetch
let p_sort_key = p.partition.sort_key();
let sort_key = cache
.get(Arc::clone(&cached_table), p_id, &[c1.column.id], None)
.get_one(Arc::clone(&cached_table), p_id, &[c1.column.id], None)
.await
.unwrap()
.sort_key;
@ -684,7 +813,11 @@ mod tests {
column_order: [c1.column.id, c2.column.id].into(),
}
);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 4);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
3,
);
// subsets and the full key don't expire
for should_cover in [
@ -694,7 +827,7 @@ mod tests {
vec![c1.column.id, c2.column.id],
] {
let sort_key_2 = cache
.get(Arc::clone(&cached_table), p_id, &should_cover, None)
.get_one(Arc::clone(&cached_table), p_id, &should_cover, None)
.await
.unwrap()
.sort_key;
@ -702,13 +835,17 @@ mod tests {
sort_key.as_ref().unwrap(),
sort_key_2.as_ref().unwrap()
));
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 4);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
3,
);
}
// unknown columns expire
let c3 = t.create_column("x", ColumnType::Tag).await;
let sort_key_2 = cache
.get(
.get_one(
Arc::clone(&cached_table),
p_id,
&[c1.column.id, c3.column.id],
@ -722,10 +859,259 @@ mod tests {
sort_key_2.as_ref().unwrap()
));
assert_eq!(sort_key, sort_key_2);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 5);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
4,
);
}
#[tokio::test]
async fn test_multi_get() {
let catalog = TestCatalog::new();
let ns = catalog.create_namespace_1hr_retention("ns").await;
let t = ns.create_table("table").await;
let p1 = t.create_partition("k1").await.partition.clone();
let p2 = t.create_partition("k2").await.partition.clone();
let cached_table = Arc::new(CachedTable {
id: t.table.id,
schema: schema(),
column_id_map: HashMap::default(),
column_id_map_rev: HashMap::default(),
primary_key_column_ids: [].into(),
partition_template: TablePartitionTemplateOverride::default(),
});
let cache = PartitionCache::new(
catalog.catalog(),
BackoffConfig::default(),
catalog.time_provider(),
&catalog.metric_registry(),
test_ram_pool(),
true,
);
let mut res = cache
.get(
Arc::clone(&cached_table),
vec![
PartitionRequest {
partition_id: p1.id,
sort_key_should_cover: vec![],
},
PartitionRequest {
partition_id: p2.id,
sort_key_should_cover: vec![],
},
PartitionRequest {
partition_id: p1.id,
sort_key_should_cover: vec![],
},
PartitionRequest {
// requesting non-existing partitions is fine, they just don't appear in the output
partition_id: PartitionId::new(i64::MAX),
sort_key_should_cover: vec![],
},
],
None,
)
.await;
res.sort_by_key(|p| p.id);
let ids = res.iter().map(|p| p.id).collect::<Vec<_>>();
assert_eq!(ids, vec![p1.id, p1.id, p2.id]);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
1,
);
// empty get
let res = cache.get(Arc::clone(&cached_table), vec![], None).await;
assert_eq!(res, vec![]);
}
/// This is a regression test for <https://github.com/influxdata/influxdb_iox/issues/8286>.
///
/// The issue happened when requests for multiple (different) tables were made concurrently. The root cause was the
/// wrong assumption that when flushing the batched up requests, there would only be a single table in the flushed set.
///
/// To trigger this, we need at least 2 tokio threads.
#[tokio::test(flavor = "multi_thread", worker_threads = 2)]
async fn test_multi_table_concurrent_get() {
// In most cases, the issue triggers on the first run. However let's be sure and try multiple times.
for _ in 0..10 {
test_multi_table_concurrent_get_inner().await;
}
}
/// Actually implementation of [`test_multi_table_concurrent_get`] that is tried multiple times.
async fn test_multi_table_concurrent_get_inner() {
let catalog = TestCatalog::new();
// prepare catalog state for two tables
let ns = catalog.create_namespace_1hr_retention("ns").await;
let state_1 = ConcurrencyTestState::prepare(&ns, "t1").await;
let state_2 = ConcurrencyTestState::prepare(&ns, "t2").await;
// sanity checks for test setup
assert!(!Arc::ptr_eq(&state_1.cached_table, &state_2.cached_table));
assert_ne!(state_1.cached_table.id, state_2.cached_table.id);
assert_ne!(state_1.c_id, state_2.c_id);
assert_ne!(state_1.partitions, state_2.partitions);
let cache = Arc::new(PartitionCache::new(
catalog.catalog(),
BackoffConfig::default(),
catalog.time_provider(),
&catalog.metric_registry(),
test_ram_pool(),
true,
));
// use a barrier to make sure that both tokio tasks are running at the same time
let barrier = Arc::new(Barrier::new(2));
// set up first tokio task
let barrier_captured = Arc::clone(&barrier);
let cache_captured = Arc::clone(&cache);
let handle_1 = tokio::spawn(async move {
barrier_captured.wait().await;
// When running quickly, both tasks will end up on the same tokio worker and will run in sequence. It seems
// that tokio tries to avoid costly work-stealing. However we can trick tokio into actually running both
// task concurrently with a bit more async work: a simple sleep.
tokio::time::sleep(std::time::Duration::from_millis(10)).await;
state_1.run(cache_captured).await;
});
// set up 2nd tokio tasks in a same manner as the first one (but for the other table)
let barrier_captured = Arc::clone(&barrier);
let cache_captured = Arc::clone(&cache);
let handle_2 = tokio::spawn(async move {
barrier_captured.wait().await;
tokio::time::sleep(std::time::Duration::from_millis(10)).await;
state_2.run(cache_captured).await;
});
handle_1.await.unwrap();
handle_2.await.unwrap();
}
/// Building block for a single table within the [`test_multi_table_concurrent_get`] test.
struct ConcurrencyTestState {
/// Cached table that is used for [`PartitionCache::get`].
cached_table: Arc<CachedTable>,
/// ID of the only column within that table.
c_id: ColumnId,
/// Partitions within that table.
partitions: Vec<PartitionId>,
}
impl ConcurrencyTestState {
/// Prepare catalog state.
async fn prepare(ns: &Arc<TestNamespace>, name: &str) -> Self {
let t = ns.create_table(name).await;
let c = t.create_column("time", ColumnType::Time).await;
let cached_table = Arc::new(CachedTable {
id: t.table.id,
schema: schema(),
column_id_map: HashMap::from([(c.column.id, Arc::from(c.column.name.clone()))]),
column_id_map_rev: HashMap::from([(Arc::from(c.column.name.clone()), c.column.id)]),
primary_key_column_ids: [c.column.id].into(),
partition_template: TablePartitionTemplateOverride::default(),
});
const N_PARTITIONS: usize = 20;
let mut partitions = futures::stream::iter(0..N_PARTITIONS)
.then(|i| {
let t = Arc::clone(&t);
async move {
t.create_partition_with_sort_key(&format!("p{i}"), &["time"])
.await
.partition
.id
}
})
.collect::<Vec<_>>()
.await;
partitions.sort();
Self {
cached_table,
c_id: c.column.id,
partitions,
}
}
/// Perform the actual [`PartitionCache::get`] call and run some basic sanity checks on the result.
async fn run(self, cache: Arc<PartitionCache>) {
let Self {
cached_table,
c_id,
partitions,
} = self;
let mut results = cache
.get(
cached_table,
partitions
.iter()
.map(|p| PartitionRequest {
partition_id: *p,
sort_key_should_cover: vec![],
})
.collect(),
None,
)
.await;
results.sort_by_key(|p| p.id);
let partitions_res = results.iter().map(|p| p.id).collect::<Vec<_>>();
assert_eq!(partitions, partitions_res);
assert!(results
.iter()
.all(|p| p.sort_key.as_ref().unwrap().column_set == HashSet::from([c_id])));
}
}
fn schema() -> Schema {
SchemaBuilder::new().build().unwrap()
}
/// Extension methods for simpler testing.
#[async_trait]
trait PartitionCacheExt {
async fn get_one(
&self,
cached_table: Arc<CachedTable>,
partition_id: PartitionId,
sort_key_should_cover: &[ColumnId],
span: Option<Span>,
) -> Option<CachedPartition>;
}
#[async_trait]
impl PartitionCacheExt for PartitionCache {
async fn get_one(
&self,
cached_table: Arc<CachedTable>,
partition_id: PartitionId,
sort_key_should_cover: &[ColumnId],
span: Option<Span>,
) -> Option<CachedPartition> {
self.get(
cached_table,
vec![PartitionRequest {
partition_id,
sort_key_should_cover: sort_key_should_cover.to_vec(),
}],
span,
)
.await
.into_iter()
.next()
}
}
}

View File

@ -106,6 +106,7 @@ pub mod tests {
use crate::cache::{
namespace::{CachedNamespace, CachedTable},
partition::PartitionRequest,
CatalogCache,
};
@ -249,11 +250,15 @@ pub mod tests {
.partition()
.get(
Arc::clone(&self.cached_table),
self.parquet_file.partition_id,
&[],
vec![PartitionRequest {
partition_id: self.parquet_file.partition_id,
sort_key_should_cover: vec![],
}],
None,
)
.await
.into_iter()
.next()
.unwrap();
let cached_partitions =
HashMap::from([(self.parquet_file.partition_id, cached_partition)]);

View File

@ -1,17 +1,19 @@
use self::query_access::QuerierTableChunkPruner;
use crate::{
cache::{namespace::CachedTable, partition::CachedPartition},
cache::{
namespace::CachedTable,
partition::{CachedPartition, PartitionRequest},
},
ingester::{self, IngesterPartition},
parquet::ChunkAdapter,
IngesterConnection, CONCURRENT_CHUNK_CREATION_JOBS,
IngesterConnection,
};
use data_types::{ColumnId, NamespaceId, ParquetFile, PartitionId, TableId};
use datafusion::error::DataFusionError;
use futures::{join, StreamExt};
use futures::join;
use iox_query::{provider, provider::ChunkPruner, QueryChunk};
use observability_deps::tracing::{debug, trace};
use predicate::Predicate;
use rand::{rngs::StdRng, seq::SliceRandom, SeedableRng};
use schema::Schema;
use snafu::{ResultExt, Snafu};
use std::{
@ -345,33 +347,26 @@ impl QuerierTable {
.extend(f.column_set.iter().copied().filter(|id| pk.contains(id)));
}
// shuffle order to even catalog load, because cache hits/misses might be correlated w/ the order of the
// partitions.
//
// Note that we sort before shuffling to achieve a deterministic pseudo-random order
let mut partitions = should_cover.into_iter().collect::<Vec<_>>();
let mut rng = StdRng::seed_from_u64(cached_table.id.get() as u64);
partitions.sort_by(|(a_p_id, _a_cols), (b_p_id, _b_cols)| a_p_id.cmp(b_p_id));
partitions.shuffle(&mut rng);
futures::stream::iter(partitions)
.map(|(p_id, cover)| {
let catalog_cache = self.chunk_adapter.catalog_cache();
let span = span_recorder.child_span("fetch partition");
async move {
let cover = cover.into_iter().collect::<Vec<_>>();
let cached_partition = catalog_cache
.partition()
.get(Arc::clone(cached_table), p_id, &cover, span)
.await;
cached_partition.map(|p| (p_id, p))
}
// batch request all partitions
let requests = should_cover
.into_iter()
.map(|(id, cover)| PartitionRequest {
partition_id: id,
sort_key_should_cover: cover.into_iter().collect(),
})
.buffer_unordered(CONCURRENT_CHUNK_CREATION_JOBS)
.filter_map(|x| async move { x })
.collect::<HashMap<_, _>>()
.await
.collect();
let partitions = self
.chunk_adapter
.catalog_cache()
.partition()
.get(
Arc::clone(cached_table),
requests,
span_recorder.child_span("fetch partitions"),
)
.await;
partitions.into_iter().map(|p| (p.id, p)).collect()
}
/// Get a chunk pruner that can be used to prune chunks retrieved via [`chunks`](Self::chunks)
@ -891,12 +886,22 @@ mod tests {
let chunks = querier_table.chunks().await.unwrap();
assert_eq!(chunks.len(), 5);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 6);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 4);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
1,
);
assert_cache_access_metric_count(&catalog.metric_registry, "partition", 2);
let chunks = querier_table.chunks().await.unwrap();
assert_eq!(chunks.len(), 5);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 6);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 4);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
1,
);
assert_cache_access_metric_count(&catalog.metric_registry, "partition", 4);
partition_2
@ -904,12 +909,22 @@ mod tests {
TestParquetFileBuilder::default().with_line_protocol("table,tag1=a foo=1,bar=1 11"),
)
.await;
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 7);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 5);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
1,
);
// file not visible yet
let chunks = querier_table.chunks().await.unwrap();
assert_eq!(chunks.len(), 5);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 7);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 5);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
1,
);
assert_cache_access_metric_count(&catalog.metric_registry, "partition", 6);
// change inster ID => invalidates cache
@ -918,7 +933,12 @@ mod tests {
.with_ingester_partition(ingester_partition_builder.build());
let chunks = querier_table.chunks().await.unwrap();
assert_eq!(chunks.len(), 6);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 8);
assert_catalog_access_metric_count(&catalog.metric_registry, "partition_get_by_id", 5);
assert_catalog_access_metric_count(
&catalog.metric_registry,
"partition_get_by_id_batch",
2,
);
assert_cache_access_metric_count(&catalog.metric_registry, "partition", 8);
}

View File

@ -19,7 +19,7 @@ tokio = { version = "1.29", features = ["macros", "parking_lot", "sync", "time"]
tokio-util = { version = "0.7.8" }
trace = { path = "../trace"}
workspace-hack = { version = "0.1", path = "../workspace-hack" }
sysinfo = "0.29.5"
sysinfo = "0.29.6"
[dev-dependencies]
tempfile = "3.7.0"