* feat: use bitmasks within MUB (#1274) * chore: review feedback Co-authored-by: kodiakhq[bot] <49736102+kodiakhq[bot]@users.noreply.github.com>pull/24376/head
parent
e33af0c084
commit
0a835436ac
|
@ -1889,6 +1889,7 @@ dependencies = [
|
|||
"internal_types",
|
||||
"observability_deps",
|
||||
"parking_lot",
|
||||
"rand 0.8.3",
|
||||
"snafu",
|
||||
"test_helpers",
|
||||
"tokio",
|
||||
|
|
|
@ -1,10 +1,10 @@
|
|||
//! This module contains structs that describe the metadata for a partition
|
||||
//! including schema, summary statistics, and file locations in storage.
|
||||
|
||||
use std::fmt::{Debug, Display};
|
||||
use std::mem;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::borrow::Borrow;
|
||||
|
||||
/// Describes the schema, summary statistics for each column in each table and
|
||||
/// the location of the partition in storage.
|
||||
|
@ -222,8 +222,8 @@ impl Statistics {
|
|||
}
|
||||
|
||||
/// Summary statistics for a column.
|
||||
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
|
||||
pub struct StatValues<T: PartialEq + PartialOrd + Debug + Display + Clone> {
|
||||
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq, Default)]
|
||||
pub struct StatValues<T> {
|
||||
pub min: T,
|
||||
pub max: T,
|
||||
/// number of non-nil values in this column
|
||||
|
@ -232,51 +232,38 @@ pub struct StatValues<T: PartialEq + PartialOrd + Debug + Display + Clone> {
|
|||
|
||||
impl<T> StatValues<T>
|
||||
where
|
||||
T: PartialEq + PartialOrd + Debug + Display + Clone,
|
||||
T: Default + Clone,
|
||||
{
|
||||
pub fn new(starting_value: T) -> Self {
|
||||
pub fn new() -> Self {
|
||||
Self::default()
|
||||
}
|
||||
|
||||
pub fn new_with_value(starting_value: T) -> Self {
|
||||
Self {
|
||||
min: starting_value.clone(),
|
||||
max: starting_value,
|
||||
count: 1,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> StatValues<T> {
|
||||
/// updates the statistics keeping the min, max and incrementing count.
|
||||
pub fn update(&mut self, other: T) {
|
||||
///
|
||||
/// The type plumbing exists to allow calling with &str on a StatValues<String>
|
||||
pub fn update<U: ?Sized>(&mut self, other: &U)
|
||||
where
|
||||
T: Borrow<U>,
|
||||
U: ToOwned<Owned = T> + PartialOrd,
|
||||
{
|
||||
self.count += 1;
|
||||
|
||||
let set_min = self.min > other;
|
||||
let set_max = self.max < other;
|
||||
|
||||
match (set_min, set_max) {
|
||||
(true, true) => {
|
||||
self.min = other.clone();
|
||||
self.max = other;
|
||||
}
|
||||
(true, false) => {
|
||||
self.min = other;
|
||||
}
|
||||
(false, true) => {
|
||||
self.max = other;
|
||||
}
|
||||
(false, false) => (),
|
||||
}
|
||||
}
|
||||
if self.count == 1 || self.min.borrow() > other {
|
||||
self.min = other.to_owned();
|
||||
}
|
||||
|
||||
impl StatValues<String> {
|
||||
/// Function for string stats to avoid allocating if we're not updating min
|
||||
/// or max
|
||||
pub fn update_string(stats: &mut Self, other: &str) {
|
||||
stats.count += 1;
|
||||
|
||||
if stats.min.as_str() > other {
|
||||
stats.min = other.to_string();
|
||||
}
|
||||
|
||||
if stats.max.as_str() < other {
|
||||
stats.max = other.to_string();
|
||||
if self.count == 1 || self.max.borrow() < other {
|
||||
self.max = other.to_owned();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -287,45 +274,73 @@ mod tests {
|
|||
|
||||
#[test]
|
||||
fn statistics_update() {
|
||||
let mut stat = StatValues::new(23);
|
||||
let mut stat = StatValues::new_with_value(23);
|
||||
assert_eq!(stat.min, 23);
|
||||
assert_eq!(stat.max, 23);
|
||||
assert_eq!(stat.count, 1);
|
||||
|
||||
stat.update(55);
|
||||
stat.update(&55);
|
||||
assert_eq!(stat.min, 23);
|
||||
assert_eq!(stat.max, 55);
|
||||
assert_eq!(stat.count, 2);
|
||||
|
||||
stat.update(6);
|
||||
stat.update(&6);
|
||||
assert_eq!(stat.min, 6);
|
||||
assert_eq!(stat.max, 55);
|
||||
assert_eq!(stat.count, 3);
|
||||
|
||||
stat.update(30);
|
||||
stat.update(&30);
|
||||
assert_eq!(stat.min, 6);
|
||||
assert_eq!(stat.max, 55);
|
||||
assert_eq!(stat.count, 4);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn statistics_default() {
|
||||
let mut stat = StatValues::new();
|
||||
assert_eq!(stat.min, 0);
|
||||
assert_eq!(stat.max, 0);
|
||||
assert_eq!(stat.count, 0);
|
||||
|
||||
stat.update(&55);
|
||||
assert_eq!(stat.min, 55);
|
||||
assert_eq!(stat.max, 55);
|
||||
assert_eq!(stat.count, 1);
|
||||
|
||||
let mut stat = StatValues::new();
|
||||
assert_eq!(&stat.min, "");
|
||||
assert_eq!(&stat.max, "");
|
||||
assert_eq!(stat.count, 0);
|
||||
|
||||
stat.update("cupcakes");
|
||||
assert_eq!(&stat.min, "cupcakes");
|
||||
assert_eq!(&stat.max, "cupcakes");
|
||||
assert_eq!(stat.count, 1);
|
||||
|
||||
stat.update("woo");
|
||||
assert_eq!(&stat.min, "cupcakes");
|
||||
assert_eq!(&stat.max, "woo");
|
||||
assert_eq!(stat.count, 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn update_string() {
|
||||
let mut stat = StatValues::new("bbb".to_string());
|
||||
let mut stat = StatValues::new_with_value("bbb".to_string());
|
||||
assert_eq!(stat.min, "bbb".to_string());
|
||||
assert_eq!(stat.max, "bbb".to_string());
|
||||
assert_eq!(stat.count, 1);
|
||||
|
||||
StatValues::update_string(&mut stat, "aaa");
|
||||
stat.update("aaa");
|
||||
assert_eq!(stat.min, "aaa".to_string());
|
||||
assert_eq!(stat.max, "bbb".to_string());
|
||||
assert_eq!(stat.count, 2);
|
||||
|
||||
StatValues::update_string(&mut stat, "z");
|
||||
stat.update("z");
|
||||
assert_eq!(stat.min, "aaa".to_string());
|
||||
assert_eq!(stat.max, "z".to_string());
|
||||
assert_eq!(stat.count, 3);
|
||||
|
||||
StatValues::update_string(&mut stat, "p");
|
||||
stat.update("p");
|
||||
assert_eq!(stat.min, "aaa".to_string());
|
||||
assert_eq!(stat.max, "z".to_string());
|
||||
assert_eq!(stat.count, 4);
|
||||
|
@ -333,22 +348,22 @@ mod tests {
|
|||
|
||||
#[test]
|
||||
fn table_update_from() {
|
||||
let mut string_stats = StatValues::new("foo".to_string());
|
||||
string_stats.update("bar".to_string());
|
||||
let mut string_stats = StatValues::new_with_value("foo".to_string());
|
||||
string_stats.update("bar");
|
||||
let string_col = ColumnSummary {
|
||||
name: "string".to_string(),
|
||||
stats: Statistics::String(string_stats),
|
||||
};
|
||||
|
||||
let mut int_stats = StatValues::new(1);
|
||||
int_stats.update(5);
|
||||
let mut int_stats = StatValues::new_with_value(1);
|
||||
int_stats.update(&5);
|
||||
let int_col = ColumnSummary {
|
||||
name: "int".to_string(),
|
||||
stats: Statistics::I64(int_stats),
|
||||
};
|
||||
|
||||
let mut float_stats = StatValues::new(9.1);
|
||||
float_stats.update(1.3);
|
||||
let mut float_stats = StatValues::new_with_value(9.1);
|
||||
float_stats.update(&1.3);
|
||||
let float_col = ColumnSummary {
|
||||
name: "float".to_string(),
|
||||
stats: Statistics::F64(float_stats),
|
||||
|
@ -359,15 +374,15 @@ mod tests {
|
|||
columns: vec![string_col, int_col, float_col],
|
||||
};
|
||||
|
||||
let mut string_stats = StatValues::new("aaa".to_string());
|
||||
string_stats.update("zzz".to_string());
|
||||
let mut string_stats = StatValues::new_with_value("aaa".to_string());
|
||||
string_stats.update("zzz");
|
||||
let string_col = ColumnSummary {
|
||||
name: "string".to_string(),
|
||||
stats: Statistics::String(string_stats),
|
||||
};
|
||||
|
||||
let mut int_stats = StatValues::new(3);
|
||||
int_stats.update(9);
|
||||
let mut int_stats = StatValues::new_with_value(3);
|
||||
int_stats.update(&9);
|
||||
let int_col = ColumnSummary {
|
||||
name: "int".to_string(),
|
||||
stats: Statistics::I64(int_stats),
|
||||
|
@ -446,15 +461,15 @@ mod tests {
|
|||
|
||||
#[test]
|
||||
fn from_table_summaries() {
|
||||
let mut string_stats = StatValues::new("foo".to_string());
|
||||
string_stats.update("bar".to_string());
|
||||
let mut string_stats = StatValues::new_with_value("foo".to_string());
|
||||
string_stats.update("bar");
|
||||
let string_col = ColumnSummary {
|
||||
name: "string".to_string(),
|
||||
stats: Statistics::String(string_stats),
|
||||
};
|
||||
|
||||
let mut int_stats = StatValues::new(1);
|
||||
int_stats.update(5);
|
||||
let mut int_stats = StatValues::new_with_value(1);
|
||||
int_stats.update(&5);
|
||||
let int_col = ColumnSummary {
|
||||
name: "int".to_string(),
|
||||
stats: Statistics::I64(int_stats),
|
||||
|
@ -467,7 +482,7 @@ mod tests {
|
|||
|
||||
let int_col = ColumnSummary {
|
||||
name: "int".to_string(),
|
||||
stats: Statistics::I64(StatValues::new(10)),
|
||||
stats: Statistics::I64(StatValues::new_with_value(10)),
|
||||
};
|
||||
let table_b = TableSummary {
|
||||
name: "b".to_string(),
|
||||
|
@ -481,7 +496,7 @@ mod tests {
|
|||
|
||||
let int_col = ColumnSummary {
|
||||
name: "int".to_string(),
|
||||
stats: Statistics::I64(StatValues::new(203)),
|
||||
stats: Statistics::I64(StatValues::new_with_value(203)),
|
||||
};
|
||||
let table_b_2 = TableSummary {
|
||||
name: "b".to_string(),
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
//! This module contains helper code for building `Entry` and `SequencedEntry`
|
||||
//! from line protocol and the `DatabaseRules` configuration.
|
||||
|
||||
use crate::schema::TIME_COLUMN_NAME;
|
||||
use crate::schema::{InfluxColumnType, InfluxFieldType, TIME_COLUMN_NAME};
|
||||
use data_types::database_rules::{Error as DataError, Partitioner, ShardId, Sharder, WriterId};
|
||||
use generated_types::entry as entry_fb;
|
||||
use influxdb_line_protocol::{FieldValue, ParsedLine};
|
||||
|
@ -445,6 +445,37 @@ impl<'a> Column<'a> {
|
|||
.expect("name must be present in flatbuffers Column")
|
||||
}
|
||||
|
||||
pub fn inner(&self) -> &entry_fb::Column<'a> {
|
||||
&self.fb
|
||||
}
|
||||
|
||||
pub fn influx_type(&self) -> InfluxColumnType {
|
||||
match (self.fb.values_type(), self.fb.logical_column_type()) {
|
||||
(entry_fb::ColumnValues::BoolValues, entry_fb::LogicalColumnType::Field) => {
|
||||
InfluxColumnType::Field(InfluxFieldType::Boolean)
|
||||
}
|
||||
(entry_fb::ColumnValues::U64Values, entry_fb::LogicalColumnType::Field) => {
|
||||
InfluxColumnType::Field(InfluxFieldType::UInteger)
|
||||
}
|
||||
(entry_fb::ColumnValues::F64Values, entry_fb::LogicalColumnType::Field) => {
|
||||
InfluxColumnType::Field(InfluxFieldType::Float)
|
||||
}
|
||||
(entry_fb::ColumnValues::I64Values, entry_fb::LogicalColumnType::Field) => {
|
||||
InfluxColumnType::Field(InfluxFieldType::Integer)
|
||||
}
|
||||
(entry_fb::ColumnValues::StringValues, entry_fb::LogicalColumnType::Tag) => {
|
||||
InfluxColumnType::Tag
|
||||
}
|
||||
(entry_fb::ColumnValues::StringValues, entry_fb::LogicalColumnType::Field) => {
|
||||
InfluxColumnType::Field(InfluxFieldType::String)
|
||||
}
|
||||
(entry_fb::ColumnValues::I64Values, entry_fb::LogicalColumnType::Time) => {
|
||||
InfluxColumnType::Timestamp
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn logical_type(&self) -> entry_fb::LogicalColumnType {
|
||||
self.fb.logical_column_type()
|
||||
}
|
||||
|
|
|
@ -617,10 +617,10 @@ impl From<&InfluxColumnType> for &'static str {
|
|||
}
|
||||
}
|
||||
|
||||
impl ToString for InfluxColumnType {
|
||||
fn to_string(&self) -> String {
|
||||
impl std::fmt::Display for InfluxColumnType {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
let s: &str = self.into();
|
||||
s.into()
|
||||
write!(f, "{}", s)
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -95,6 +95,15 @@ impl SchemaBuilder {
|
|||
)
|
||||
}
|
||||
|
||||
/// Add a new field column with the specified InfluxDB data model type
|
||||
pub fn influx_column(self, column_name: &str, column_type: InfluxColumnType) -> Self {
|
||||
match column_type {
|
||||
InfluxColumnType::Tag => self.tag(column_name),
|
||||
InfluxColumnType::Field(field) => self.field(column_name, field.into()),
|
||||
InfluxColumnType::Timestamp => self.timestamp(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Add a new nullable field column with the specified Arrow datatype.
|
||||
pub fn field(self, column_name: &str, arrow_type: ArrowDataType) -> Self {
|
||||
let influxdb_column_type = arrow_type
|
||||
|
|
|
@ -35,6 +35,7 @@ tracker = { path = "../tracker" }
|
|||
test_helpers = { path = "../test_helpers" }
|
||||
criterion = "0.3"
|
||||
flate2 = "1.0.20"
|
||||
rand = "0.8.3"
|
||||
|
||||
[features]
|
||||
default = []
|
||||
|
|
|
@ -0,0 +1,264 @@
|
|||
use arrow_deps::arrow::buffer::Buffer;
|
||||
|
||||
/// An arrow-compatible mutable bitset implementation
|
||||
///
|
||||
/// Note: This currently operates on individual bytes at a time
|
||||
/// it could be optimised to instead operate on usize blocks
|
||||
#[derive(Debug)]
|
||||
pub struct BitSet {
|
||||
/// The underlying data
|
||||
///
|
||||
/// Data is stored in the least significant bit of a byte first
|
||||
buffer: Vec<u8>,
|
||||
|
||||
/// The length of this mask in bits
|
||||
len: usize,
|
||||
}
|
||||
|
||||
impl BitSet {
|
||||
/// Creates a new BitSet
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
buffer: Default::default(),
|
||||
len: 0,
|
||||
}
|
||||
}
|
||||
|
||||
/// Appends `count` unset bits
|
||||
pub fn append_unset(&mut self, count: usize) {
|
||||
self.len += count;
|
||||
let new_buf_len = (self.len + 7) >> 3;
|
||||
self.buffer.resize(new_buf_len, 0);
|
||||
}
|
||||
|
||||
/// Appends `count` boolean values from the slice of packed bits
|
||||
pub fn append_bits(&mut self, count: usize, to_set: &[u8]) {
|
||||
let new_len = self.len + count;
|
||||
let new_buf_len = (new_len + 7) >> 3;
|
||||
self.buffer.reserve(new_buf_len - self.buffer.len());
|
||||
|
||||
let whole_bytes = count >> 3;
|
||||
let overrun = count & 7;
|
||||
|
||||
let skew = self.len & 7;
|
||||
if skew == 0 {
|
||||
self.buffer.extend_from_slice(&to_set[..whole_bytes]);
|
||||
if overrun > 0 {
|
||||
let masked = to_set[whole_bytes] & ((1 << overrun) - 1);
|
||||
self.buffer.push(masked)
|
||||
}
|
||||
|
||||
self.len = new_len;
|
||||
debug_assert_eq!(self.buffer.len(), new_buf_len);
|
||||
return;
|
||||
}
|
||||
|
||||
for to_set_byte in &to_set[..whole_bytes] {
|
||||
let low = *to_set_byte << skew;
|
||||
let high = *to_set_byte >> (8 - skew);
|
||||
|
||||
*self.buffer.last_mut().unwrap() |= low;
|
||||
self.buffer.push(high);
|
||||
}
|
||||
|
||||
if overrun > 0 {
|
||||
let masked = to_set[whole_bytes] & ((1 << overrun) - 1);
|
||||
let low = masked << skew;
|
||||
*self.buffer.last_mut().unwrap() |= low;
|
||||
|
||||
if overrun > 8 - skew {
|
||||
let high = masked >> (8 - skew);
|
||||
self.buffer.push(high)
|
||||
}
|
||||
}
|
||||
|
||||
self.len = new_len;
|
||||
debug_assert_eq!(self.buffer.len(), new_buf_len);
|
||||
}
|
||||
|
||||
/// Sets a given bit
|
||||
pub fn set(&mut self, idx: usize) {
|
||||
let byte_idx = idx >> 3;
|
||||
let bit_idx = idx & 7;
|
||||
self.buffer[byte_idx] |= 1 << bit_idx;
|
||||
}
|
||||
|
||||
/// Returns if the given index is set
|
||||
pub fn get(&self, idx: usize) -> bool {
|
||||
let byte_idx = idx >> 3;
|
||||
let bit_idx = idx & 7;
|
||||
(self.buffer[byte_idx] >> bit_idx) & 1 != 0
|
||||
}
|
||||
|
||||
/// Converts this BitSet to a buffer compatible with arrows boolean encoding
|
||||
pub fn to_arrow(&self) -> Buffer {
|
||||
Buffer::from(&self.buffer)
|
||||
}
|
||||
|
||||
/// Returns the number of values stored in the bitset
|
||||
pub fn len(&self) -> usize {
|
||||
self.len
|
||||
}
|
||||
|
||||
/// Returns the number of bytes used by this bitset
|
||||
pub fn byte_len(&self) -> usize {
|
||||
self.buffer.len()
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns an iterator over set bit positions in increasing order
|
||||
pub fn iter_set_positions(bytes: &[u8]) -> impl Iterator<Item = usize> + '_ {
|
||||
let mut byte_idx = 0;
|
||||
let mut in_progress = bytes.get(0).cloned().unwrap_or(0);
|
||||
std::iter::from_fn(move || loop {
|
||||
if in_progress != 0 {
|
||||
let bit_pos = in_progress.trailing_zeros();
|
||||
in_progress ^= 1 << bit_pos;
|
||||
return Some((byte_idx << 3) + (bit_pos as usize));
|
||||
}
|
||||
byte_idx += 1;
|
||||
in_progress = *bytes.get(byte_idx)?;
|
||||
})
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use arrow_deps::arrow::array::BooleanBufferBuilder;
|
||||
use rand::RngCore;
|
||||
|
||||
/// Computes a compacted representation of a given bool array
|
||||
fn compact_bools(bools: &[bool]) -> Vec<u8> {
|
||||
bools
|
||||
.chunks(8)
|
||||
.map(|x| {
|
||||
let mut collect = 0_u8;
|
||||
for (idx, set) in x.iter().enumerate() {
|
||||
if *set {
|
||||
collect |= 1 << idx
|
||||
}
|
||||
}
|
||||
collect
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn iter_set_bools(bools: &[bool]) -> impl Iterator<Item = usize> + '_ {
|
||||
bools.iter().enumerate().filter_map(|(x, y)| y.then(|| x))
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compact_bools() {
|
||||
let bools = &[
|
||||
false, false, true, true, false, false, true, false, true, false,
|
||||
];
|
||||
let collected = compact_bools(bools);
|
||||
let indexes: Vec<_> = iter_set_bools(bools).collect();
|
||||
assert_eq!(collected.as_slice(), &[0b01001100, 0b00000001]);
|
||||
assert_eq!(indexes.as_slice(), &[2, 3, 6, 8])
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bit_mask() {
|
||||
let mut mask = BitSet::new();
|
||||
|
||||
mask.append_bits(8, &[0b11111111]);
|
||||
let d1 = mask.buffer.clone();
|
||||
|
||||
mask.append_bits(3, &[0b01010010]);
|
||||
let d2 = mask.buffer.clone();
|
||||
|
||||
mask.append_bits(5, &[0b00010100]);
|
||||
let d3 = mask.buffer.clone();
|
||||
|
||||
mask.append_bits(2, &[0b11110010]);
|
||||
let d4 = mask.buffer.clone();
|
||||
|
||||
mask.append_bits(15, &[0b11011010, 0b01010101]);
|
||||
let d5 = mask.buffer.clone();
|
||||
|
||||
assert_eq!(d1.as_slice(), &[0b11111111]);
|
||||
assert_eq!(d2.as_slice(), &[0b11111111, 0b00000010]);
|
||||
assert_eq!(d3.as_slice(), &[0b11111111, 0b10100010]);
|
||||
assert_eq!(d4.as_slice(), &[0b11111111, 0b10100010, 0b00000010]);
|
||||
assert_eq!(
|
||||
d5.as_slice(),
|
||||
&[0b11111111, 0b10100010, 0b01101010, 0b01010111, 0b00000001]
|
||||
);
|
||||
|
||||
assert!(mask.get(0));
|
||||
assert!(!mask.get(8));
|
||||
assert!(mask.get(9));
|
||||
assert!(mask.get(19));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bit_mask_all_set() {
|
||||
let mut mask = BitSet::new();
|
||||
let mut all_bools = vec![];
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
for _ in 0..100 {
|
||||
let mask_length = (rng.next_u32() % 50) as usize;
|
||||
let bools: Vec<_> = std::iter::repeat(true).take(mask_length).collect();
|
||||
|
||||
let collected = compact_bools(&bools);
|
||||
mask.append_bits(mask_length, &collected);
|
||||
all_bools.extend_from_slice(&bools);
|
||||
}
|
||||
|
||||
let collected = compact_bools(&all_bools);
|
||||
assert_eq!(mask.buffer, collected);
|
||||
|
||||
let expected_indexes: Vec<_> = iter_set_bools(&all_bools).collect();
|
||||
let actual_indexes: Vec<_> = iter_set_positions(&mask.buffer).collect();
|
||||
assert_eq!(expected_indexes, actual_indexes);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bit_mask_fuzz() {
|
||||
let mut mask = BitSet::new();
|
||||
let mut all_bools = vec![];
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
for _ in 0..100 {
|
||||
let mask_length = (rng.next_u32() % 50) as usize;
|
||||
let bools: Vec<_> = std::iter::from_fn(|| Some(rng.next_u32() & 1 == 0))
|
||||
.take(mask_length)
|
||||
.collect();
|
||||
|
||||
let collected = compact_bools(&bools);
|
||||
mask.append_bits(mask_length, &collected);
|
||||
all_bools.extend_from_slice(&bools);
|
||||
}
|
||||
|
||||
let collected = compact_bools(&all_bools);
|
||||
assert_eq!(mask.buffer, collected);
|
||||
|
||||
let expected_indexes: Vec<_> = iter_set_bools(&all_bools).collect();
|
||||
let actual_indexes: Vec<_> = iter_set_positions(&mask.buffer).collect();
|
||||
assert_eq!(expected_indexes, actual_indexes);
|
||||
for index in actual_indexes {
|
||||
assert!(mask.get(index));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_arrow_compat() {
|
||||
let bools = &[
|
||||
false, false, true, true, false, false, true, false, true, false, false, true,
|
||||
];
|
||||
|
||||
let mut builder = BooleanBufferBuilder::new(bools.len());
|
||||
builder.append_slice(bools);
|
||||
let buffer = builder.finish();
|
||||
|
||||
let collected = compact_bools(bools);
|
||||
let mut mask = BitSet::new();
|
||||
mask.append_bits(bools.len(), &collected);
|
||||
let mask_buffer = mask.to_arrow();
|
||||
|
||||
assert_eq!(collected.as_slice(), buffer.as_slice());
|
||||
assert_eq!(buffer.as_slice(), mask_buffer.as_slice());
|
||||
}
|
||||
}
|
|
@ -8,6 +8,7 @@ use internal_types::selection::Selection;
|
|||
use snafu::{OptionExt, ResultExt, Snafu};
|
||||
|
||||
use super::Chunk;
|
||||
use data_types::partition_metadata::Statistics;
|
||||
|
||||
#[derive(Debug, Snafu)]
|
||||
pub enum Error {
|
||||
|
@ -64,11 +65,14 @@ impl ChunkSnapshot {
|
|||
.lookup_value(TIME_COLUMN_NAME)
|
||||
.ok()
|
||||
.and_then(|column_id| {
|
||||
table.column(column_id).ok().and_then(|column| {
|
||||
// TimestampRange has an exclusive upper bound
|
||||
column
|
||||
.get_i64_stats()
|
||||
.map(|x| TimestampRange::new(x.min, x.max + 1))
|
||||
table
|
||||
.column(column_id)
|
||||
.ok()
|
||||
.and_then(|column| match column.stats() {
|
||||
Statistics::I64(stats) => {
|
||||
Some(TimestampRange::new(stats.min, stats.max + 1))
|
||||
}
|
||||
_ => None,
|
||||
})
|
||||
});
|
||||
|
||||
|
|
|
@ -1,341 +1,253 @@
|
|||
use snafu::Snafu;
|
||||
use snafu::{ensure, Snafu};
|
||||
|
||||
use crate::dictionary::{Dictionary, DID};
|
||||
use data_types::partition_metadata::StatValues;
|
||||
use generated_types::entry::LogicalColumnType;
|
||||
use internal_types::entry::TypedValuesIterator;
|
||||
use data_types::partition_metadata::{StatValues, Statistics};
|
||||
use internal_types::entry::Column as EntryColumn;
|
||||
|
||||
use crate::bitset::{iter_set_positions, BitSet};
|
||||
use arrow_deps::arrow::array::{
|
||||
ArrayDataBuilder, ArrayRef, BooleanArray, Float64Array, Int64Array, StringArray,
|
||||
TimestampNanosecondArray, UInt64Array,
|
||||
};
|
||||
use arrow_deps::arrow::datatypes::DataType;
|
||||
use internal_types::schema::{InfluxColumnType, InfluxFieldType, TIME_DATA_TYPE};
|
||||
use std::iter::FromIterator;
|
||||
use std::mem;
|
||||
use std::sync::Arc;
|
||||
|
||||
#[derive(Debug, Snafu)]
|
||||
#[allow(missing_copy_implementations)]
|
||||
pub enum Error {
|
||||
#[snafu(display("Don't know how to insert a column of type {}", inserted_value_type))]
|
||||
UnknownColumnType { inserted_value_type: String },
|
||||
|
||||
#[snafu(display(
|
||||
"Unable to insert {} type into a column of {}",
|
||||
inserted_value_type,
|
||||
existing_column_type
|
||||
))]
|
||||
#[snafu(display("Unable to insert {} type into a column of {}", inserted, existing,))]
|
||||
TypeMismatch {
|
||||
existing_column_type: String,
|
||||
inserted_value_type: String,
|
||||
existing: InfluxColumnType,
|
||||
inserted: InfluxColumnType,
|
||||
},
|
||||
|
||||
#[snafu(display("InternalError: Applying i64 range on a column with non-i64 type"))]
|
||||
InternalTypeMismatchForTimePredicate,
|
||||
#[snafu(display(
|
||||
"Invalid null mask, expected to be {} bytes but was {}",
|
||||
expected_bytes,
|
||||
actual_bytes
|
||||
))]
|
||||
InvalidNullMask {
|
||||
expected_bytes: usize,
|
||||
actual_bytes: usize,
|
||||
},
|
||||
}
|
||||
pub type Result<T, E = Error> = std::result::Result<T, E>;
|
||||
|
||||
/// Stores the actual data for columns in a chunk along with summary
|
||||
/// statistics
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum Column {
|
||||
F64(Vec<Option<f64>>, StatValues<f64>),
|
||||
I64(Vec<Option<i64>>, StatValues<i64>),
|
||||
U64(Vec<Option<u64>>, StatValues<u64>),
|
||||
String(Vec<Option<String>>, StatValues<String>),
|
||||
Bool(Vec<Option<bool>>, StatValues<bool>),
|
||||
#[derive(Debug)]
|
||||
pub struct Column {
|
||||
influx_type: InfluxColumnType,
|
||||
valid: BitSet,
|
||||
data: ColumnData,
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub enum ColumnData {
|
||||
F64(Vec<f64>, StatValues<f64>),
|
||||
I64(Vec<i64>, StatValues<i64>),
|
||||
U64(Vec<u64>, StatValues<u64>),
|
||||
String(Vec<String>, StatValues<String>),
|
||||
Bool(BitSet, StatValues<bool>),
|
||||
Tag(Vec<DID>, StatValues<String>),
|
||||
}
|
||||
|
||||
impl Column {
|
||||
/// Initializes a new column from typed values, the column on a table write
|
||||
/// batch on an Entry. Will initialize the stats with the first
|
||||
/// non-null value and update with any other non-null values included.
|
||||
pub fn new_from_typed_values(
|
||||
dictionary: &mut Dictionary,
|
||||
row_count: usize,
|
||||
logical_type: LogicalColumnType,
|
||||
values: TypedValuesIterator<'_>,
|
||||
) -> Self {
|
||||
match values {
|
||||
TypedValuesIterator::String(vals) => match logical_type {
|
||||
LogicalColumnType::Tag => {
|
||||
let mut tag_values = vec![DID::invalid(); row_count];
|
||||
let mut stats: Option<StatValues<String>> = None;
|
||||
pub fn new(row_count: usize, column_type: InfluxColumnType) -> Self {
|
||||
let mut valid = BitSet::new();
|
||||
valid.append_unset(row_count);
|
||||
|
||||
let mut added_tag_values: Vec<_> = vals
|
||||
.map(|tag| match tag {
|
||||
Some(tag) => {
|
||||
match stats.as_mut() {
|
||||
Some(s) => StatValues::update_string(s, tag),
|
||||
None => {
|
||||
stats = Some(StatValues::new(tag.to_string()));
|
||||
let data = match column_type {
|
||||
InfluxColumnType::Field(InfluxFieldType::Boolean) => {
|
||||
let mut data = BitSet::new();
|
||||
data.append_unset(row_count);
|
||||
ColumnData::Bool(data, StatValues::new())
|
||||
}
|
||||
InfluxColumnType::Field(InfluxFieldType::UInteger) => {
|
||||
ColumnData::U64(vec![0; row_count], StatValues::new())
|
||||
}
|
||||
|
||||
dictionary.lookup_value_or_insert(tag)
|
||||
InfluxColumnType::Field(InfluxFieldType::Float) => {
|
||||
ColumnData::F64(vec![0.0; row_count], StatValues::new())
|
||||
}
|
||||
None => DID::invalid(),
|
||||
})
|
||||
.collect();
|
||||
|
||||
tag_values.append(&mut added_tag_values);
|
||||
|
||||
Self::Tag(
|
||||
tag_values,
|
||||
stats.expect("can't insert tag column with no values"),
|
||||
)
|
||||
InfluxColumnType::Field(InfluxFieldType::Integer) | InfluxColumnType::Timestamp => {
|
||||
ColumnData::I64(vec![0; row_count], StatValues::new())
|
||||
}
|
||||
LogicalColumnType::Field => {
|
||||
let mut values = vec![None; row_count];
|
||||
let mut stats: Option<StatValues<String>> = None;
|
||||
|
||||
for value in vals {
|
||||
match value {
|
||||
Some(v) => {
|
||||
match stats.as_mut() {
|
||||
Some(s) => StatValues::update_string(s, v),
|
||||
None => stats = Some(StatValues::new(v.to_string())),
|
||||
InfluxColumnType::Field(InfluxFieldType::String) => {
|
||||
ColumnData::String(vec![String::new(); row_count], StatValues::new())
|
||||
}
|
||||
|
||||
values.push(Some(v.to_string()));
|
||||
InfluxColumnType::Tag => {
|
||||
ColumnData::Tag(vec![DID::invalid(); row_count], StatValues::new())
|
||||
}
|
||||
None => values.push(None),
|
||||
}
|
||||
}
|
||||
|
||||
Self::String(
|
||||
values,
|
||||
stats.expect("can't insert string column with no values"),
|
||||
)
|
||||
}
|
||||
_ => panic!("unsupported!"),
|
||||
},
|
||||
TypedValuesIterator::I64(vals) => {
|
||||
let mut values = vec![None; row_count];
|
||||
let mut stats: Option<StatValues<i64>> = None;
|
||||
|
||||
for v in vals {
|
||||
if let Some(val) = v {
|
||||
match stats.as_mut() {
|
||||
Some(s) => s.update(val),
|
||||
None => stats = Some(StatValues::new(val)),
|
||||
}
|
||||
}
|
||||
values.push(v);
|
||||
}
|
||||
|
||||
Self::I64(
|
||||
values,
|
||||
stats.expect("can't insert i64 column with no values"),
|
||||
)
|
||||
}
|
||||
TypedValuesIterator::F64(vals) => {
|
||||
let mut values = vec![None; row_count];
|
||||
let mut stats: Option<StatValues<f64>> = None;
|
||||
|
||||
for v in vals {
|
||||
if let Some(val) = v {
|
||||
match stats.as_mut() {
|
||||
Some(s) => s.update(val),
|
||||
None => stats = Some(StatValues::new(val)),
|
||||
}
|
||||
}
|
||||
values.push(v);
|
||||
}
|
||||
|
||||
Self::F64(
|
||||
values,
|
||||
stats.expect("can't insert f64 column with no values"),
|
||||
)
|
||||
}
|
||||
TypedValuesIterator::U64(vals) => {
|
||||
let mut values = vec![None; row_count];
|
||||
let mut stats: Option<StatValues<u64>> = None;
|
||||
|
||||
for v in vals {
|
||||
if let Some(val) = v {
|
||||
match stats.as_mut() {
|
||||
Some(s) => s.update(val),
|
||||
None => stats = Some(StatValues::new(val)),
|
||||
}
|
||||
}
|
||||
values.push(v);
|
||||
}
|
||||
|
||||
Self::U64(
|
||||
values,
|
||||
stats.expect("can't insert u64 column with no values"),
|
||||
)
|
||||
}
|
||||
TypedValuesIterator::Bool(vals) => {
|
||||
let mut values = vec![None; row_count];
|
||||
let mut stats: Option<StatValues<bool>> = None;
|
||||
|
||||
for v in vals {
|
||||
if let Some(val) = v {
|
||||
match stats.as_mut() {
|
||||
Some(s) => s.update(val),
|
||||
None => stats = Some(StatValues::new(val)),
|
||||
}
|
||||
}
|
||||
values.push(v);
|
||||
}
|
||||
|
||||
Self::Bool(
|
||||
values,
|
||||
stats.expect("can't insert bool column with no values"),
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Pushes typed values, the column from a table write batch on an Entry.
|
||||
/// Updates statsistics for any non-null values.
|
||||
pub fn push_typed_values(
|
||||
&mut self,
|
||||
dictionary: &mut Dictionary,
|
||||
logical_type: LogicalColumnType,
|
||||
values: TypedValuesIterator<'_>,
|
||||
) -> Result<()> {
|
||||
match (self, values) {
|
||||
(Self::Bool(col, stats), TypedValuesIterator::Bool(values)) => {
|
||||
for val in values {
|
||||
if let Some(v) = val {
|
||||
stats.update(v)
|
||||
};
|
||||
col.push(val);
|
||||
|
||||
Self {
|
||||
influx_type: column_type,
|
||||
valid,
|
||||
data,
|
||||
}
|
||||
}
|
||||
(Self::I64(col, stats), TypedValuesIterator::I64(values)) => {
|
||||
for val in values {
|
||||
if let Some(v) = val {
|
||||
stats.update(v)
|
||||
};
|
||||
col.push(val);
|
||||
}
|
||||
}
|
||||
(Self::F64(col, stats), TypedValuesIterator::F64(values)) => {
|
||||
for val in values {
|
||||
if let Some(v) = val {
|
||||
stats.update(v)
|
||||
};
|
||||
col.push(val);
|
||||
}
|
||||
}
|
||||
(Self::U64(col, stats), TypedValuesIterator::U64(values)) => {
|
||||
for val in values {
|
||||
if let Some(v) = val {
|
||||
stats.update(v)
|
||||
};
|
||||
col.push(val);
|
||||
}
|
||||
}
|
||||
(Self::String(col, stats), TypedValuesIterator::String(values)) => {
|
||||
if logical_type != LogicalColumnType::Field {
|
||||
|
||||
pub fn validate_schema(&self, entry: &EntryColumn<'_>) -> Result<()> {
|
||||
let entry_type = entry.influx_type();
|
||||
|
||||
ensure!(
|
||||
entry_type == self.influx_type,
|
||||
TypeMismatch {
|
||||
existing_column_type: "String",
|
||||
inserted_value_type: "tag",
|
||||
}
|
||||
.fail()?;
|
||||
}
|
||||
|
||||
for val in values {
|
||||
match val {
|
||||
Some(v) => {
|
||||
StatValues::update_string(stats, v);
|
||||
col.push(Some(v.to_string()));
|
||||
}
|
||||
None => col.push(None),
|
||||
}
|
||||
}
|
||||
}
|
||||
(Self::Tag(col, stats), TypedValuesIterator::String(values)) => {
|
||||
if logical_type != LogicalColumnType::Tag {
|
||||
TypeMismatch {
|
||||
existing_column_type: "tag",
|
||||
inserted_value_type: "String",
|
||||
}
|
||||
.fail()?;
|
||||
}
|
||||
|
||||
for val in values {
|
||||
match val {
|
||||
Some(v) => {
|
||||
StatValues::update_string(stats, v);
|
||||
let id = dictionary.lookup_value_or_insert(v);
|
||||
col.push(id);
|
||||
}
|
||||
None => col.push(DID::invalid()),
|
||||
}
|
||||
}
|
||||
}
|
||||
(existing, values) => TypeMismatch {
|
||||
existing_column_type: existing.type_description(),
|
||||
inserted_value_type: values.type_description(),
|
||||
}
|
||||
.fail()?,
|
||||
existing: self.influx_type,
|
||||
inserted: entry_type
|
||||
}
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Pushes None values onto the column until its len is equal to that passed
|
||||
/// in
|
||||
pub fn influx_type(&self) -> InfluxColumnType {
|
||||
self.influx_type
|
||||
}
|
||||
|
||||
pub fn append(&mut self, entry: &EntryColumn<'_>, dictionary: &mut Dictionary) -> Result<()> {
|
||||
self.validate_schema(entry)?;
|
||||
|
||||
let row_count = entry.row_count;
|
||||
if row_count == 0 {
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
let mask = construct_valid_mask(entry)?;
|
||||
|
||||
match &mut self.data {
|
||||
ColumnData::Bool(col_data, stats) => {
|
||||
let entry_data = entry
|
||||
.inner()
|
||||
.values_as_bool_values()
|
||||
.expect("invalid flatbuffer")
|
||||
.values()
|
||||
.expect("invalid payload");
|
||||
|
||||
let data_offset = col_data.len();
|
||||
col_data.append_unset(row_count);
|
||||
|
||||
let initial_non_null_count = stats.count;
|
||||
|
||||
for (idx, value) in iter_set_positions(&mask).zip(entry_data) {
|
||||
stats.update(value);
|
||||
|
||||
if *value {
|
||||
col_data.set(data_offset + idx);
|
||||
}
|
||||
}
|
||||
assert_eq!(
|
||||
stats.count - initial_non_null_count,
|
||||
entry_data.len() as u64
|
||||
);
|
||||
}
|
||||
ColumnData::U64(col_data, stats) => {
|
||||
let entry_data = entry
|
||||
.inner()
|
||||
.values_as_u64values()
|
||||
.expect("invalid flatbuffer")
|
||||
.values()
|
||||
.expect("invalid payload")
|
||||
.into_iter();
|
||||
|
||||
handle_write(row_count, &mask, entry_data, col_data, stats);
|
||||
}
|
||||
ColumnData::F64(col_data, stats) => {
|
||||
let entry_data = entry
|
||||
.inner()
|
||||
.values_as_f64values()
|
||||
.expect("invalid flatbuffer")
|
||||
.values()
|
||||
.expect("invalid payload")
|
||||
.into_iter();
|
||||
|
||||
handle_write(row_count, &mask, entry_data, col_data, stats);
|
||||
}
|
||||
ColumnData::I64(col_data, stats) => {
|
||||
let entry_data = entry
|
||||
.inner()
|
||||
.values_as_i64values()
|
||||
.expect("invalid flatbuffer")
|
||||
.values()
|
||||
.expect("invalid payload")
|
||||
.into_iter();
|
||||
|
||||
handle_write(row_count, &mask, entry_data, col_data, stats);
|
||||
}
|
||||
ColumnData::String(col_data, stats) => {
|
||||
let entry_data = entry
|
||||
.inner()
|
||||
.values_as_string_values()
|
||||
.expect("invalid flatbuffer")
|
||||
.values()
|
||||
.expect("invalid payload")
|
||||
.into_iter()
|
||||
.map(ToString::to_string);
|
||||
|
||||
handle_write(row_count, &mask, entry_data, col_data, stats);
|
||||
}
|
||||
ColumnData::Tag(col_data, stats) => {
|
||||
let entry_data = entry
|
||||
.inner()
|
||||
.values_as_string_values()
|
||||
.expect("invalid flatbuffer")
|
||||
.values()
|
||||
.expect("invalid payload");
|
||||
|
||||
let data_offset = col_data.len();
|
||||
col_data.resize(data_offset + row_count, DID::invalid());
|
||||
|
||||
let initial_non_null_count = stats.count;
|
||||
let to_add = entry_data.len();
|
||||
|
||||
for (idx, value) in iter_set_positions(&mask).zip(entry_data) {
|
||||
stats.update(value);
|
||||
col_data[data_offset + idx] = dictionary.lookup_value_or_insert(value);
|
||||
}
|
||||
|
||||
assert_eq!(stats.count - initial_non_null_count, to_add as u64);
|
||||
}
|
||||
};
|
||||
|
||||
self.valid.append_bits(entry.row_count, &mask);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn push_nulls_to_len(&mut self, len: usize) {
|
||||
match self {
|
||||
Self::Tag(vals, _) => {
|
||||
if len > vals.len() {
|
||||
vals.resize(len, DID::invalid());
|
||||
}
|
||||
}
|
||||
Self::I64(vals, _) => {
|
||||
if len > vals.len() {
|
||||
vals.resize(len, None);
|
||||
}
|
||||
}
|
||||
Self::F64(vals, _) => {
|
||||
if len > vals.len() {
|
||||
vals.resize(len, None);
|
||||
}
|
||||
}
|
||||
Self::U64(vals, _) => {
|
||||
if len > vals.len() {
|
||||
vals.resize(len, None);
|
||||
}
|
||||
}
|
||||
Self::Bool(vals, _) => {
|
||||
if len > vals.len() {
|
||||
vals.resize(len, None);
|
||||
}
|
||||
}
|
||||
Self::String(vals, _) => {
|
||||
if len > vals.len() {
|
||||
vals.resize(len, None);
|
||||
}
|
||||
if self.valid.len() == len {
|
||||
return;
|
||||
}
|
||||
assert!(len > self.valid.len(), "cannot shrink column");
|
||||
let delta = len - self.valid.len();
|
||||
self.valid.append_unset(delta);
|
||||
|
||||
match &mut self.data {
|
||||
ColumnData::F64(data, _) => data.resize(len, 0.),
|
||||
ColumnData::I64(data, _) => data.resize(len, 0),
|
||||
ColumnData::U64(data, _) => data.resize(len, 0),
|
||||
ColumnData::String(data, _) => data.resize(len, String::new()),
|
||||
ColumnData::Bool(data, _) => data.append_unset(delta),
|
||||
ColumnData::Tag(data, _) => data.resize(len, DID::invalid()),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn len(&self) -> usize {
|
||||
match self {
|
||||
Self::F64(v, _) => v.len(),
|
||||
Self::I64(v, _) => v.len(),
|
||||
Self::U64(v, _) => v.len(),
|
||||
Self::String(v, _) => v.len(),
|
||||
Self::Bool(v, _) => v.len(),
|
||||
Self::Tag(v, _) => v.len(),
|
||||
}
|
||||
self.valid.len()
|
||||
}
|
||||
|
||||
pub fn type_description(&self) -> &'static str {
|
||||
match self {
|
||||
Self::F64(_, _) => "f64",
|
||||
Self::I64(_, _) => "i64",
|
||||
Self::U64(_, _) => "u64",
|
||||
Self::String(_, _) => "String",
|
||||
Self::Bool(_, _) => "bool",
|
||||
Self::Tag(_, _) => "tag",
|
||||
pub fn stats(&self) -> Statistics {
|
||||
match &self.data {
|
||||
ColumnData::F64(_, stats) => Statistics::F64(stats.clone()),
|
||||
ColumnData::I64(_, stats) => Statistics::I64(stats.clone()),
|
||||
ColumnData::U64(_, stats) => Statistics::U64(stats.clone()),
|
||||
ColumnData::Bool(_, stats) => Statistics::Bool(stats.clone()),
|
||||
ColumnData::String(_, stats) | ColumnData::Tag(_, stats) => {
|
||||
Statistics::String(stats.clone())
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_i64_stats(&self) -> Option<StatValues<i64>> {
|
||||
match self {
|
||||
Self::I64(_, values) => Some(values.clone()),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
/// The approximate memory size of the data in the column. Note that
|
||||
|
@ -343,27 +255,150 @@ impl Column {
|
|||
/// the dictionary size in the chunk that holds the table that has this
|
||||
/// column. The size returned here is only for their identifiers.
|
||||
pub fn size(&self) -> usize {
|
||||
match self {
|
||||
Self::F64(v, stats) => {
|
||||
mem::size_of::<Option<f64>>() * v.len() + mem::size_of_val(&stats)
|
||||
}
|
||||
Self::I64(v, stats) => {
|
||||
mem::size_of::<Option<i64>>() * v.len() + mem::size_of_val(&stats)
|
||||
}
|
||||
Self::U64(v, stats) => {
|
||||
mem::size_of::<Option<u64>>() * v.len() + mem::size_of_val(&stats)
|
||||
}
|
||||
Self::Bool(v, stats) => {
|
||||
mem::size_of::<Option<bool>>() * v.len() + mem::size_of_val(&stats)
|
||||
}
|
||||
Self::Tag(v, stats) => mem::size_of::<DID>() * v.len() + mem::size_of_val(&stats),
|
||||
Self::String(v, stats) => {
|
||||
let string_bytes_size = v
|
||||
.iter()
|
||||
.fold(0, |acc, val| acc + val.as_ref().map_or(0, |s| s.len()));
|
||||
let vec_pointer_sizes = mem::size_of::<Option<String>>() * v.len();
|
||||
let data_size = match &self.data {
|
||||
ColumnData::F64(v, stats) => mem::size_of::<f64>() * v.len() + mem::size_of_val(&stats),
|
||||
ColumnData::I64(v, stats) => mem::size_of::<i64>() * v.len() + mem::size_of_val(&stats),
|
||||
ColumnData::U64(v, stats) => mem::size_of::<u64>() * v.len() + mem::size_of_val(&stats),
|
||||
ColumnData::Bool(v, stats) => v.byte_len() + mem::size_of_val(&stats),
|
||||
ColumnData::Tag(v, stats) => mem::size_of::<DID>() * v.len() + mem::size_of_val(&stats),
|
||||
ColumnData::String(v, stats) => {
|
||||
let string_bytes_size = v.iter().fold(0, |acc, val| acc + val.len());
|
||||
let vec_pointer_sizes = mem::size_of::<String>() * v.len();
|
||||
string_bytes_size + vec_pointer_sizes + mem::size_of_val(&stats)
|
||||
}
|
||||
};
|
||||
data_size + self.valid.byte_len()
|
||||
}
|
||||
|
||||
pub fn to_arrow(&self, dictionary: &Dictionary) -> Result<ArrayRef> {
|
||||
let nulls = self.valid.to_arrow();
|
||||
let data: ArrayRef = match &self.data {
|
||||
ColumnData::F64(data, _) => {
|
||||
let data = ArrayDataBuilder::new(DataType::Float64)
|
||||
.len(data.len())
|
||||
.add_buffer(data.iter().cloned().collect())
|
||||
.null_bit_buffer(nulls)
|
||||
.build();
|
||||
Arc::new(Float64Array::from(data))
|
||||
}
|
||||
ColumnData::I64(data, _) => match self.influx_type {
|
||||
InfluxColumnType::Timestamp => {
|
||||
let data = ArrayDataBuilder::new(TIME_DATA_TYPE())
|
||||
.len(data.len())
|
||||
.add_buffer(data.iter().cloned().collect())
|
||||
.null_bit_buffer(nulls)
|
||||
.build();
|
||||
Arc::new(TimestampNanosecondArray::from(data))
|
||||
}
|
||||
InfluxColumnType::Field(InfluxFieldType::Integer) => {
|
||||
let data = ArrayDataBuilder::new(DataType::Int64)
|
||||
.len(data.len())
|
||||
.add_buffer(data.iter().cloned().collect())
|
||||
.null_bit_buffer(nulls)
|
||||
.build();
|
||||
|
||||
Arc::new(Int64Array::from(data))
|
||||
}
|
||||
_ => unreachable!(),
|
||||
},
|
||||
ColumnData::U64(data, _) => {
|
||||
let data = ArrayDataBuilder::new(DataType::UInt64)
|
||||
.len(data.len())
|
||||
.add_buffer(data.iter().cloned().collect())
|
||||
.null_bit_buffer(nulls)
|
||||
.build();
|
||||
Arc::new(UInt64Array::from(data))
|
||||
}
|
||||
ColumnData::String(data, _) => {
|
||||
// TODO: Store this closer to the arrow representation
|
||||
let iter = data
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(idx, value)| self.valid.get(idx).then(|| value) as _);
|
||||
|
||||
let array = StringArray::from_iter(iter);
|
||||
Arc::new(array)
|
||||
}
|
||||
ColumnData::Bool(data, _) => {
|
||||
let data = ArrayDataBuilder::new(DataType::Boolean)
|
||||
.len(data.len())
|
||||
.add_buffer(data.to_arrow())
|
||||
.null_bit_buffer(nulls)
|
||||
.build();
|
||||
Arc::new(BooleanArray::from(data))
|
||||
}
|
||||
ColumnData::Tag(data, _) => {
|
||||
// TODO: Store this closer to the arrow representation
|
||||
let iter = data.iter().enumerate().map(|(idx, id)| {
|
||||
self.valid.get(idx).then(|| {
|
||||
dictionary
|
||||
.lookup_id(*id)
|
||||
.expect("dictionary had mapping for tag value")
|
||||
})
|
||||
});
|
||||
|
||||
let array = StringArray::from_iter(iter);
|
||||
Arc::new(array)
|
||||
}
|
||||
};
|
||||
|
||||
assert_eq!(data.len(), self.len());
|
||||
|
||||
Ok(data)
|
||||
}
|
||||
}
|
||||
|
||||
/// Construct a validity mask from the given column's null mask
|
||||
fn construct_valid_mask(column: &EntryColumn<'_>) -> Result<Vec<u8>> {
|
||||
let buf_len = (column.row_count + 7) >> 3;
|
||||
match column.inner().null_mask() {
|
||||
Some(data) => {
|
||||
ensure!(
|
||||
data.len() == buf_len,
|
||||
InvalidNullMask {
|
||||
expected_bytes: buf_len,
|
||||
actual_bytes: data.len()
|
||||
}
|
||||
);
|
||||
|
||||
Ok(data
|
||||
.iter()
|
||||
.map(|x| {
|
||||
// Currently the bit mask is backwards
|
||||
!x.reverse_bits()
|
||||
})
|
||||
.collect())
|
||||
}
|
||||
None => {
|
||||
// If no null mask they're all valid
|
||||
let mut data = Vec::new();
|
||||
data.resize(buf_len, 0xFF);
|
||||
Ok(data)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Writes entry data into a column based on the valid mask
|
||||
fn handle_write<T, E>(
|
||||
row_count: usize,
|
||||
valid_mask: &[u8],
|
||||
entry_data: E,
|
||||
col_data: &mut Vec<T>,
|
||||
stats: &mut StatValues<T>,
|
||||
) where
|
||||
T: Clone + Default + PartialOrd,
|
||||
E: Iterator<Item = T> + ExactSizeIterator,
|
||||
{
|
||||
let data_offset = col_data.len();
|
||||
col_data.resize(data_offset + row_count, Default::default());
|
||||
|
||||
let initial_non_null_count = stats.count;
|
||||
let to_add = entry_data.len();
|
||||
|
||||
for (idx, value) in iter_set_positions(valid_mask).zip(entry_data) {
|
||||
stats.update(&value);
|
||||
col_data[data_offset + idx] = value;
|
||||
}
|
||||
|
||||
assert_eq!(stats.count - initial_non_null_count, to_add as u64);
|
||||
}
|
||||
|
|
|
@ -57,6 +57,7 @@
|
|||
clippy::clone_on_ref_ptr
|
||||
)]
|
||||
|
||||
mod bitset;
|
||||
pub mod chunk;
|
||||
mod column;
|
||||
mod dictionary;
|
||||
|
|
|
@ -1,33 +1,20 @@
|
|||
use std::{cmp, collections::BTreeMap, iter::FromIterator, sync::Arc};
|
||||
use std::collections::BTreeMap;
|
||||
|
||||
use crate::{
|
||||
column,
|
||||
column::Column,
|
||||
dictionary::{Dictionary, Error as DictionaryError, DID},
|
||||
};
|
||||
use data_types::{
|
||||
database_rules::WriterId,
|
||||
partition_metadata::{ColumnSummary, Statistics},
|
||||
};
|
||||
use data_types::{database_rules::WriterId, partition_metadata::ColumnSummary};
|
||||
use internal_types::{
|
||||
entry::{self, ClockValue},
|
||||
schema::{builder::SchemaBuilder, Schema, TIME_COLUMN_NAME},
|
||||
schema::{builder::SchemaBuilder, Schema},
|
||||
selection::Selection,
|
||||
};
|
||||
|
||||
use snafu::{OptionExt, ResultExt, Snafu};
|
||||
use snafu::{ensure, OptionExt, ResultExt, Snafu};
|
||||
|
||||
use arrow_deps::{
|
||||
arrow,
|
||||
arrow::{
|
||||
array::{
|
||||
ArrayRef, BooleanArray, Float64Array, Int64Array, StringArray,
|
||||
TimestampNanosecondArray, UInt64Array,
|
||||
},
|
||||
datatypes::DataType as ArrowDataType,
|
||||
record_batch::RecordBatch,
|
||||
},
|
||||
};
|
||||
use arrow_deps::{arrow, arrow::record_batch::RecordBatch};
|
||||
|
||||
#[derive(Debug, Snafu)]
|
||||
pub enum Error {
|
||||
|
@ -37,30 +24,13 @@ pub enum Error {
|
|||
source: column::Error,
|
||||
},
|
||||
|
||||
#[snafu(display(
|
||||
"Expected column {} to be type {} but was {}",
|
||||
column,
|
||||
expected_column_type,
|
||||
actual_column_type
|
||||
))]
|
||||
ColumnTypeMismatch {
|
||||
#[snafu(display("Column {} had {} rows, expected {}", column, expected, actual))]
|
||||
IncorrectRowCount {
|
||||
column: String,
|
||||
expected_column_type: String,
|
||||
actual_column_type: String,
|
||||
expected: usize,
|
||||
actual: usize,
|
||||
},
|
||||
|
||||
#[snafu(display(
|
||||
"Expected column {} to be a tag but received it as a string field",
|
||||
column
|
||||
))]
|
||||
ExpectedTag { column: String },
|
||||
|
||||
#[snafu(display(
|
||||
"Expected column {} to be a string field but received it as a tag",
|
||||
column
|
||||
))]
|
||||
ExpectedField { column: String },
|
||||
|
||||
#[snafu(display("Internal error: unexpected aggregate request for None aggregate",))]
|
||||
InternalUnexpectedNoneAggregate {},
|
||||
|
||||
|
@ -115,7 +85,7 @@ pub enum Error {
|
|||
}
|
||||
pub type Result<T, E = Error> = std::result::Result<T, E>;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
#[derive(Debug)]
|
||||
pub struct Table {
|
||||
/// Name of the table as a DID in the chunk dictionary
|
||||
pub id: DID,
|
||||
|
@ -164,83 +134,51 @@ impl Table {
|
|||
_writer_id: WriterId,
|
||||
columns: Vec<entry::Column<'_>>,
|
||||
) -> Result<()> {
|
||||
// get the column ids and validate schema for those that already exist
|
||||
let columns_with_inserts = columns
|
||||
.into_iter()
|
||||
.map(|insert_column| {
|
||||
let column_id = dictionary.lookup_value_or_insert(insert_column.name());
|
||||
let values = insert_column.values();
|
||||
|
||||
if let Some(c) = self.columns.get(&column_id) {
|
||||
match (&values, c) {
|
||||
(entry::TypedValuesIterator::Bool(_), Column::Bool(_, _)) => (),
|
||||
(entry::TypedValuesIterator::U64(_), Column::U64(_, _)) => (),
|
||||
(entry::TypedValuesIterator::F64(_), Column::F64(_, _)) => (),
|
||||
(entry::TypedValuesIterator::I64(_), Column::I64(_, _)) => (),
|
||||
(entry::TypedValuesIterator::String(_), Column::String(_, _)) => {
|
||||
if !insert_column.is_field() {
|
||||
ExpectedField {
|
||||
column: insert_column.name(),
|
||||
}
|
||||
.fail()?
|
||||
};
|
||||
}
|
||||
(entry::TypedValuesIterator::String(_), Column::Tag(_, _)) => {
|
||||
if !insert_column.is_tag() {
|
||||
ExpectedTag {
|
||||
column: insert_column.name(),
|
||||
}
|
||||
.fail()?
|
||||
};
|
||||
}
|
||||
_ => ColumnTypeMismatch {
|
||||
column: insert_column.name(),
|
||||
expected_column_type: c.type_description(),
|
||||
actual_column_type: values.type_description(),
|
||||
}
|
||||
.fail()?,
|
||||
}
|
||||
}
|
||||
|
||||
Ok((column_id, insert_column.logical_type(), values))
|
||||
})
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
|
||||
let row_count_before_insert = self.row_count();
|
||||
let additional_rows = columns.first().map(|x| x.row_count).unwrap_or_default();
|
||||
let final_row_count = row_count_before_insert + additional_rows;
|
||||
|
||||
for (column_id, logical_type, values) in columns_with_inserts.into_iter() {
|
||||
match self.columns.get_mut(&column_id) {
|
||||
Some(c) => c
|
||||
.push_typed_values(dictionary, logical_type, values)
|
||||
.with_context(|| {
|
||||
let column = dictionary
|
||||
.lookup_id(column_id)
|
||||
.expect("column name must be present in dictionary");
|
||||
ColumnError { column }
|
||||
})?,
|
||||
None => {
|
||||
self.columns.insert(
|
||||
column_id,
|
||||
Column::new_from_typed_values(
|
||||
dictionary,
|
||||
row_count_before_insert,
|
||||
logical_type,
|
||||
values,
|
||||
),
|
||||
// get the column ids and validate schema for those that already exist
|
||||
let column_ids = columns
|
||||
.iter()
|
||||
.map(|column| {
|
||||
ensure!(
|
||||
column.row_count == additional_rows,
|
||||
IncorrectRowCount {
|
||||
column: column.name(),
|
||||
expected: additional_rows,
|
||||
actual: column.row_count,
|
||||
}
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
let id = dictionary.lookup_value_or_insert(column.name());
|
||||
if let Some(c) = self.columns.get(&id) {
|
||||
c.validate_schema(&column).context(ColumnError {
|
||||
column: column.name(),
|
||||
})?;
|
||||
}
|
||||
|
||||
// ensure all columns have the same number of rows as the one with the most.
|
||||
// This adds nulls to the columns that weren't included in this write
|
||||
let max_row_count = self
|
||||
Ok(id)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
|
||||
for (fb_column, column_id) in columns.into_iter().zip(column_ids.into_iter()) {
|
||||
let influx_type = fb_column.influx_type();
|
||||
|
||||
let column = self
|
||||
.columns
|
||||
.values()
|
||||
.fold(row_count_before_insert, |max, col| cmp::max(max, col.len()));
|
||||
.entry(column_id)
|
||||
.or_insert_with(|| Column::new(row_count_before_insert, influx_type));
|
||||
|
||||
column.append(&fb_column, dictionary).context(ColumnError {
|
||||
column: fb_column.name(),
|
||||
})?;
|
||||
|
||||
assert_eq!(column.len(), final_row_count);
|
||||
}
|
||||
|
||||
for c in self.columns.values_mut() {
|
||||
c.push_nulls_to_len(max_row_count);
|
||||
c.push_nulls_to_len(final_row_count);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
|
@ -324,27 +262,10 @@ impl Table {
|
|||
/// Returns the Schema of this table
|
||||
fn schema_impl(&self, selection: &TableColSelection<'_>) -> Result<Schema> {
|
||||
let mut schema_builder = SchemaBuilder::new();
|
||||
|
||||
for col in &selection.cols {
|
||||
let column_name = col.column_name;
|
||||
let column = self.column(col.column_id)?;
|
||||
|
||||
schema_builder = match column {
|
||||
Column::String(_, _) => schema_builder.field(column_name, ArrowDataType::Utf8),
|
||||
Column::Tag(_, _) => schema_builder.tag(column_name),
|
||||
Column::F64(_, _) => schema_builder.field(column_name, ArrowDataType::Float64),
|
||||
Column::I64(_, _) => {
|
||||
if column_name == TIME_COLUMN_NAME {
|
||||
schema_builder.timestamp()
|
||||
} else {
|
||||
schema_builder.field(column_name, ArrowDataType::Int64)
|
||||
schema_builder = schema_builder.influx_column(col.column_name, column.influx_type());
|
||||
}
|
||||
}
|
||||
Column::U64(_, _) => schema_builder.field(column_name, ArrowDataType::UInt64),
|
||||
Column::Bool(_, _) => schema_builder.field(column_name, ArrowDataType::Boolean),
|
||||
};
|
||||
}
|
||||
|
||||
schema_builder.build().context(InternalSchema)
|
||||
}
|
||||
|
||||
|
@ -356,60 +277,18 @@ impl Table {
|
|||
dictionary: &Dictionary,
|
||||
selection: &TableColSelection<'_>,
|
||||
) -> Result<RecordBatch> {
|
||||
let mut columns = Vec::with_capacity(selection.cols.len());
|
||||
|
||||
for col in &selection.cols {
|
||||
let columns = selection
|
||||
.cols
|
||||
.iter()
|
||||
.map(|col| {
|
||||
let column = self.column(col.column_id)?;
|
||||
|
||||
let array: ArrayRef = match column {
|
||||
Column::String(vals, _) => {
|
||||
let iter = vals.iter().map(|s| s.as_deref());
|
||||
let array = StringArray::from_iter(iter);
|
||||
Arc::new(array)
|
||||
}
|
||||
Column::Tag(vals, _) => {
|
||||
let iter = vals.iter().map(|id| {
|
||||
if *id == DID::invalid() {
|
||||
return None;
|
||||
}
|
||||
Some(
|
||||
dictionary
|
||||
.lookup_id(*id)
|
||||
.expect("dictionary had mapping for tag value"),
|
||||
)
|
||||
});
|
||||
|
||||
let array = StringArray::from_iter(iter);
|
||||
Arc::new(array)
|
||||
}
|
||||
Column::F64(vals, _) => {
|
||||
let array = Float64Array::from_iter(vals.iter());
|
||||
Arc::new(array)
|
||||
}
|
||||
Column::I64(vals, _) => {
|
||||
if col.column_name == TIME_COLUMN_NAME {
|
||||
let array = TimestampNanosecondArray::from_iter(vals.iter());
|
||||
Arc::new(array)
|
||||
} else {
|
||||
let array = Int64Array::from_iter(vals.iter());
|
||||
Arc::new(array)
|
||||
}
|
||||
}
|
||||
Column::U64(vals, _) => {
|
||||
let array = UInt64Array::from_iter(vals.iter());
|
||||
Arc::new(array)
|
||||
}
|
||||
Column::Bool(vals, _) => {
|
||||
let array = BooleanArray::from_iter(vals.iter());
|
||||
Arc::new(array)
|
||||
}
|
||||
};
|
||||
|
||||
columns.push(array);
|
||||
}
|
||||
column.to_arrow(dictionary).context(ColumnError {
|
||||
column: col.column_name,
|
||||
})
|
||||
})
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
|
||||
let schema = self.schema_impl(selection)?.into();
|
||||
|
||||
RecordBatch::try_new(schema, columns).context(ArrowError {})
|
||||
}
|
||||
|
||||
|
@ -421,19 +300,9 @@ impl Table {
|
|||
.lookup_id(*column_id)
|
||||
.expect("column name in dictionary");
|
||||
|
||||
let stats = match c {
|
||||
Column::F64(_, stats) => Statistics::F64(stats.clone()),
|
||||
Column::I64(_, stats) => Statistics::I64(stats.clone()),
|
||||
Column::U64(_, stats) => Statistics::U64(stats.clone()),
|
||||
Column::Bool(_, stats) => Statistics::Bool(stats.clone()),
|
||||
Column::String(_, stats) | Column::Tag(_, stats) => {
|
||||
Statistics::String(stats.clone())
|
||||
}
|
||||
};
|
||||
|
||||
ColumnSummary {
|
||||
name: column_name.to_string(),
|
||||
stats,
|
||||
stats: c.stats(),
|
||||
}
|
||||
})
|
||||
.collect()
|
||||
|
@ -461,7 +330,9 @@ impl<'a> TableColSelection<'a> {
|
|||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use arrow::datatypes::DataType as ArrowDataType;
|
||||
use internal_types::entry::test_helpers::lp_to_entry;
|
||||
use internal_types::schema::{InfluxColumnType, InfluxFieldType};
|
||||
|
||||
use super::*;
|
||||
|
||||
|
@ -476,15 +347,15 @@ mod tests {
|
|||
];
|
||||
|
||||
write_lines_to_table(&mut table, &mut dictionary, lp_lines.clone());
|
||||
assert_eq!(112, table.size());
|
||||
assert_eq!(84, table.size());
|
||||
|
||||
// doesn't double because of the stats overhead
|
||||
write_lines_to_table(&mut table, &mut dictionary, lp_lines.clone());
|
||||
assert_eq!(192, table.size());
|
||||
assert_eq!(132, table.size());
|
||||
|
||||
// now make sure it increased by the same amount minus stats overhead
|
||||
write_lines_to_table(&mut table, &mut dictionary, lp_lines);
|
||||
assert_eq!(272, table.size());
|
||||
assert_eq!(180, table.size());
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
@ -588,8 +459,12 @@ mod tests {
|
|||
assert!(
|
||||
matches!(
|
||||
&response,
|
||||
Error::ExpectedTag {
|
||||
Error::ColumnError {
|
||||
column,
|
||||
source: column::Error::TypeMismatch {
|
||||
existing: InfluxColumnType::Tag,
|
||||
inserted: InfluxColumnType::Field(InfluxFieldType::String)
|
||||
}
|
||||
} if column == "t1"
|
||||
),
|
||||
"didn't match returned error: {:?}",
|
||||
|
@ -618,13 +493,13 @@ mod tests {
|
|||
assert!(
|
||||
matches!(
|
||||
&response,
|
||||
Error::ColumnTypeMismatch {
|
||||
expected_column_type,
|
||||
actual_column_type,
|
||||
column
|
||||
} if expected_column_type == "i64"
|
||||
&& actual_column_type == "u64"
|
||||
&& column == "iv"
|
||||
Error::ColumnError {
|
||||
column,
|
||||
source: column::Error::TypeMismatch {
|
||||
inserted: InfluxColumnType::Field(InfluxFieldType::UInteger),
|
||||
existing: InfluxColumnType::Field(InfluxFieldType::Integer)
|
||||
}
|
||||
} if column == "iv"
|
||||
),
|
||||
"didn't match returned error: {:?}",
|
||||
response
|
||||
|
@ -652,13 +527,13 @@ mod tests {
|
|||
assert!(
|
||||
matches!(
|
||||
&response,
|
||||
Error::ColumnTypeMismatch {
|
||||
expected_column_type,
|
||||
actual_column_type,
|
||||
column
|
||||
} if expected_column_type == "f64"
|
||||
&& actual_column_type == "i64"
|
||||
&& column == "fv"
|
||||
Error::ColumnError {
|
||||
column,
|
||||
source: column::Error::TypeMismatch {
|
||||
existing: InfluxColumnType::Field(InfluxFieldType::Float),
|
||||
inserted: InfluxColumnType::Field(InfluxFieldType::Integer)
|
||||
}
|
||||
} if column == "fv"
|
||||
),
|
||||
"didn't match returned error: {:?}",
|
||||
response
|
||||
|
@ -686,13 +561,13 @@ mod tests {
|
|||
assert!(
|
||||
matches!(
|
||||
&response,
|
||||
Error::ColumnTypeMismatch {
|
||||
expected_column_type,
|
||||
actual_column_type,
|
||||
column
|
||||
} if expected_column_type == "bool"
|
||||
&& actual_column_type == "f64"
|
||||
&& column == "bv"
|
||||
Error::ColumnError {
|
||||
column,
|
||||
source: column::Error::TypeMismatch {
|
||||
existing: InfluxColumnType::Field(InfluxFieldType::Boolean),
|
||||
inserted: InfluxColumnType::Field(InfluxFieldType::Float)
|
||||
}
|
||||
} if column == "bv"
|
||||
),
|
||||
"didn't match returned error: {:?}",
|
||||
response
|
||||
|
@ -720,13 +595,13 @@ mod tests {
|
|||
assert!(
|
||||
matches!(
|
||||
&response,
|
||||
Error::ColumnTypeMismatch {
|
||||
expected_column_type,
|
||||
actual_column_type,
|
||||
column
|
||||
} if expected_column_type == "String"
|
||||
&& actual_column_type == "bool"
|
||||
&& column == "sv"
|
||||
Error::ColumnError {
|
||||
column,
|
||||
source: column::Error::TypeMismatch {
|
||||
existing: InfluxColumnType::Field(InfluxFieldType::String),
|
||||
inserted: InfluxColumnType::Field(InfluxFieldType::Boolean),
|
||||
}
|
||||
} if column == "sv"
|
||||
),
|
||||
"didn't match returned error: {:?}",
|
||||
response
|
||||
|
@ -754,8 +629,12 @@ mod tests {
|
|||
assert!(
|
||||
matches!(
|
||||
&response,
|
||||
Error::ExpectedField {
|
||||
column
|
||||
Error::ColumnError {
|
||||
column,
|
||||
source: column::Error::TypeMismatch {
|
||||
existing: InfluxColumnType::Field(InfluxFieldType::String),
|
||||
inserted: InfluxColumnType::Tag,
|
||||
}
|
||||
} if column == "sv"
|
||||
),
|
||||
"didn't match returned error: {:?}",
|
||||
|
|
|
@ -1599,7 +1599,7 @@ mod tests {
|
|||
to_arc("cpu"),
|
||||
0,
|
||||
ChunkStorage::OpenMutableBuffer,
|
||||
127,
|
||||
106,
|
||||
)];
|
||||
|
||||
let size: usize = db
|
||||
|
@ -1711,21 +1711,21 @@ mod tests {
|
|||
to_arc("cpu"),
|
||||
1,
|
||||
ChunkStorage::OpenMutableBuffer,
|
||||
121,
|
||||
100,
|
||||
),
|
||||
ChunkSummary::new_without_timestamps(
|
||||
to_arc("1970-01-05T15"),
|
||||
to_arc("cpu"),
|
||||
0,
|
||||
ChunkStorage::ClosedMutableBuffer,
|
||||
157,
|
||||
129,
|
||||
),
|
||||
ChunkSummary::new_without_timestamps(
|
||||
to_arc("1970-01-05T15"),
|
||||
to_arc("cpu"),
|
||||
1,
|
||||
ChunkStorage::OpenMutableBuffer,
|
||||
159,
|
||||
131,
|
||||
),
|
||||
];
|
||||
|
||||
|
@ -1735,7 +1735,7 @@ mod tests {
|
|||
expected, chunk_summaries
|
||||
);
|
||||
|
||||
assert_eq!(db.memory_registries.mutable_buffer.bytes(), 121 + 157 + 159);
|
||||
assert_eq!(db.memory_registries.mutable_buffer.bytes(), 100 + 129 + 131);
|
||||
assert_eq!(db.memory_registries.read_buffer.bytes(), 1213);
|
||||
}
|
||||
|
||||
|
|
|
@ -306,11 +306,11 @@ mod tests {
|
|||
columns: vec![
|
||||
ColumnSummary {
|
||||
name: "c1".to_string(),
|
||||
stats: Statistics::I64(StatValues::new(23)),
|
||||
stats: Statistics::I64(StatValues::new_with_value(23)),
|
||||
},
|
||||
ColumnSummary {
|
||||
name: "c2".to_string(),
|
||||
stats: Statistics::I64(StatValues::new(43)),
|
||||
stats: Statistics::I64(StatValues::new_with_value(43)),
|
||||
},
|
||||
],
|
||||
}],
|
||||
|
|
|
@ -268,8 +268,8 @@ async fn sql_select_from_system_chunks() {
|
|||
"+----+---------------+------------+-------------------+-----------------+",
|
||||
"| id | partition_key | table_name | storage | estimated_bytes |",
|
||||
"+----+---------------+------------+-------------------+-----------------+",
|
||||
"| 0 | 1970-01-01T00 | h2o | OpenMutableBuffer | 324 |",
|
||||
"| 0 | 1970-01-01T00 | o2 | OpenMutableBuffer | 264 |",
|
||||
"| 0 | 1970-01-01T00 | h2o | OpenMutableBuffer | 257 |",
|
||||
"| 0 | 1970-01-01T00 | o2 | OpenMutableBuffer | 221 |",
|
||||
"+----+---------------+------------+-------------------+-----------------+",
|
||||
];
|
||||
run_sql_test_case!(
|
||||
|
|
|
@ -278,7 +278,7 @@ async fn test_chunk_get() {
|
|||
table_name: "cpu".into(),
|
||||
id: 0,
|
||||
storage: ChunkStorage::OpenMutableBuffer as i32,
|
||||
estimated_bytes: 161,
|
||||
estimated_bytes: 132,
|
||||
time_of_first_write: None,
|
||||
time_of_last_write: None,
|
||||
time_closing: None,
|
||||
|
@ -288,7 +288,7 @@ async fn test_chunk_get() {
|
|||
table_name: "disk".into(),
|
||||
id: 0,
|
||||
storage: ChunkStorage::OpenMutableBuffer as i32,
|
||||
estimated_bytes: 127,
|
||||
estimated_bytes: 114,
|
||||
time_of_first_write: None,
|
||||
time_of_last_write: None,
|
||||
time_closing: None,
|
||||
|
@ -455,7 +455,7 @@ async fn test_list_partition_chunks() {
|
|||
table_name: "cpu".into(),
|
||||
id: 0,
|
||||
storage: ChunkStorage::OpenMutableBuffer as i32,
|
||||
estimated_bytes: 161,
|
||||
estimated_bytes: 132,
|
||||
time_of_first_write: None,
|
||||
time_of_last_write: None,
|
||||
time_closing: None,
|
||||
|
|
|
@ -191,7 +191,7 @@ async fn test_get_chunks() {
|
|||
.and(predicate::str::contains(
|
||||
r#""storage": "OpenMutableBuffer","#,
|
||||
))
|
||||
.and(predicate::str::contains(r#""estimated_bytes": 161"#))
|
||||
.and(predicate::str::contains(r#""estimated_bytes": 132"#))
|
||||
// Check for a non empty timestamp such as
|
||||
// "time_of_first_write": "2021-03-30T17:11:10.723866Z",
|
||||
.and(predicate::str::contains(r#""time_of_first_write": "20"#));
|
||||
|
|
Loading…
Reference in New Issue