influxdb/query/docs/Resources.md

40 lines
1.6 KiB
Markdown
Raw Normal View History

2018-05-21 21:13:54 +00:00
# Learning Resources
This documents contains a list of papers articles etc. that are useful for understanding the design of IFQL.
## Stream Processing
* Set of articles by Tyler Akidau on building stream processing engines with correctness guarantees.
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
* Published paper by Tyler AKidau on building stream processing engines with correctness guarantees.
http://www.vldb.org/pvldb/vol8/p1792-Akidau.pdf
* Paper from UC Berkley introducing Spark and RDDs
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
* A summary of the different data APIs in Spark
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html
## Map Reduce
* Google research paper on Dremel
https://research.google.com/pubs/pub36632.html
## DataFrames
* Good overview on various sparse matrix implementations. https://en.wikipedia.org/wiki/Sparse_matrix
## Query Optimization
* Volcano Optimizer Generator
https://pdfs.semanticscholar.org/a817/a3e74d1663d9eb35b4baf3161ab16f57df85.pdf
* The Cascades Framework for Query Optimization
http://db.informatik.uni-mannheim.de/downloads/hauptstudium/seminare/papers/Cascades_01.PDF
* Chapter 7: Query Optimization
From Readings in Database Systems, 5th Edition (2015)
http://www.redbook.io/pdf/ch7-queryoptimization.pdf
This chaper references various other valuable readings.
* Cost-based Optimization in Parallel Data Frameworks
https://www.cse.iitb.ac.in/~pararth09/btp/report.pdf