[Apache Arrow Python bindings](https://arrow.apache.org/docs/python/index.html) integrate with Python scripts and applications to query data stored in InfluxDB. > [!Note] > #### Use InfluxDB 3 client libraries > > We recommend using the [`influxdb3-python` Python client library](/influxdb3/version/reference/client-libraries/v3/python/) for integrating InfluxDB 3 with your Python application code. > > [InfluxDB 3 client libraries](/influxdb3/version/reference/client-libraries/v3/) wrap Apache Arrow Flight clients > and provide convenient methods for [writing](/influxdb3/version/write-data/api-client-libraries/), [querying](/influxdb3/version/query-data/execute-queries/), and processing data stored in {{% product-name %}}. > Client libraries can query using SQL or InfluxQL. The following examples show how to use the `pyarrow.flight` and `pandas` Python modules to query and format data stored in an {{% product-name %}} database: {{< code-tabs-wrapper >}} {{% code-tabs %}} [SQL](#sql-python) [InfluxQL](#influxql-python) {{% /code-tabs %}} {{% code-tab-content %}} {{% code-placeholders "DATABASE_NAME|DATABASE_TOKEN" %}} ```python # Using pyarrow>=12.0.0 FlightClient from pyarrow.flight import FlightClient, Ticket, FlightCallOptions import json import pandas import tabulate # Downsampling query groups data into 2-hour bins sql=""" SELECT DATE_BIN(INTERVAL '2 hours', time) AS time, room, selector_max(temp, time)['value'] AS 'max temp', selector_min(temp, time)['value'] AS 'min temp', avg(temp) AS 'average temp' FROM home GROUP BY 1, room ORDER BY room, 1""" flight_ticket = Ticket(json.dumps({ "namespace_name": "DATABASE_NAME", "sql_query": sql, "query_type": "sql" })) token = (b"authorization", bytes(f"Bearer DATABASE_TOKEN".encode('utf-8'))) options = FlightCallOptions(headers=[token]) client = FlightClient(f"grpc+tls://{{< influxdb/host >}}:443") reader = client.do_get(flight_ticket, options) arrow_table = reader.read_all() # Use pyarrow and pandas to view and analyze data data_frame = arrow_table.to_pandas() print(data_frame.to_markdown()) ``` {{% /code-placeholders %}} {{% /code-tab-content %}} {{% code-tab-content %}} {{% code-placeholders "DATABASE_NAME|DATABASE_TOKEN" %}} ```python # Using pyarrow>=12.0.0 FlightClient from pyarrow.flight import FlightClient, Ticket, FlightCallOptions import json import pandas import tabulate # Downsampling query groups data into 2-hour bins influxql=""" SELECT FIRST(temp) FROM home WHERE room = 'kitchen' AND time >= now() - 100d AND time <= now() - 10d GROUP BY time(2h)""" flight_ticket = Ticket(json.dumps({ "namespace_name": "DATABASE_NAME", "sql_query": influxql, "query_type": "influxql" })) token = (b"authorization", bytes(f"Bearer DATABASE_TOKEN".encode('utf-8'))) options = FlightCallOptions(headers=[token]) client = FlightClient(f"grpc+tls://{{< influxdb/host >}}:443") reader = client.do_get(flight_ticket, options) arrow_table = reader.read_all() # Use pyarrow and pandas to view and analyze data data_frame = arrow_table.to_pandas() print(data_frame.to_markdown()) ``` {{% /code-placeholders %}} {{% /code-tab-content %}} {{< /code-tabs-wrapper >}} Replace the following: - {{% code-placeholder-key %}}`DATABASE_NAME`{{% /code-placeholder-key %}}: your {{% product-name %}} database - {{% code-placeholder-key %}}`DATABASE_TOKEN`{{% /code-placeholder-key %}}: a [database token](/influxdb3/version/admin/tokens/database/) with sufficient permissions to the specified database