--- title: join() function description: The `join()` function merges two or more input streams whose values are equal on a set of common columns into a single output stream. aliases: - /v2.0/reference/flux/functions/transformations/join menu: v2_0_ref: name: join parent: built-in-transformations weight: 401 --- The `join()` function merges two or more input streams whose values are equal on a set of common columns into a single output stream. Null values are not considered equal when comparing column values. The resulting schema is the union of the input schemas. The resulting group key is the union of the input group keys. _**Function type:** Transformation_ _**Output data type:** Object_ ```js join(tables: {key1: table1, key2: table2}, on: ["_time", "_field"], method: "inner") ``` #### Output schema The column schema of the output stream is the union of the input schemas. It is also the same for the output group key. Columns are renamed using the pattern `_` to prevent ambiguity in joined tables. ##### Example: If you have two streams of data, **data_1** and **data_2**, with the following group keys: **data_1**: `[_time, _field]` **data_2**: `[_time, _field]` And join them with: ```js join(tables: {d1: data_1, d2: data_2}, on: ["_time"]) ``` The resulting group keys for all tables will be: `[_time, _field_d1, _field_d2]` ## Parameters ### tables The map of streams to be joined. Required _**Data type:** Object_ {{% note %}} `join()` currently only supports two input streams. {{% /note %}} ### on The list of columns on which to join. Required _**Data type:** Array of strings_ ### method The method used to join. Defaults to `"inner"`. _**Data type:** String_ ###### Possible Values: - `inner` - `cross` - `left` - `right` - `full` {{% note %}} The `on` parameter and the `cross` method are mutually exclusive. {{% /note %}} ## Examples #### Example join with sample data Given the following two streams of data: ##### SF_Temp** | _time | _field | _value | | ------ |:------:| -------:| | 0001 | "temp" | 70 | | 0002 | "temp" | 75 | | 0003 | "temp" | 72 | ##### NY_Temp** | _time | _field | _value | | ------ |:------:| -------:| | 0001 | "temp" | 55 | | 0002 | "temp" | 56 | | 0003 | "temp" | 55 | And the following join query: ```js join( tables: {sf: SF_Temp, ny: NY_Temp}, on: ["_time", "_field"] ) ``` The output will be: | _time | _field | _value_ny | _value_sf | | ----- | ------ | ---------:| ---------:| | 0001 | "temp" | 55 | 70 | | 0002 | "temp" | 56 | 75 | | 0003 | "temp" | 55 | 72 | #### Cross-measurement join ```js data_1 = from(bucket:"example-bucket") |> range(start:-15m) |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_system" ) data_2 = from(bucket:"example-bucket") |> range(start:-15m) |> filter(fn: (r) => r._measurement == "mem" and r._field == "used_percent" ) join( tables: {d1: data_1, d2: data_2}, on: ["_time", "host"] ) ```