Histograms provide valuable insight into the distribution of your data. This guide walks through using Flux's `histogram()` function to transform your data into a **cumulative histogram**. If you're just getting started with Flux queries, check out the following: - [Get started with Flux](/flux/v0/get-started/) for a conceptual overview of Flux and parts of a Flux query. - [Execute queries](/influxdb/version/query-data/execute-queries/) to discover a variety of ways to run your queries. ## histogram() function The [`histogram()` function](/flux/v0/stdlib/universe/histogram) approximates the cumulative distribution of a dataset by counting data frequencies for a list of "bins." A **bin** is simply a range in which a data point falls. All data points that are less than or equal to the bound are counted in the bin. In the histogram output, a column is added (`le`) that represents the upper bounds of of each bin. Bin counts are cumulative. ```js from(bucket: "example-bucket") |> range(start: -5m) |> filter(fn: (r) => r._measurement == "mem" and r._field == "used_percent") |> histogram(bins: [0.0, 10.0, 20.0, 30.0]) ``` {{% note %}} Values output by the `histogram` function represent points of data aggregated over time. Since values do not represent single points in time, there is no `_time` column in the output table. {{% /note %}} ## Bin helper functions Flux provides two helper functions for generating histogram bins. Each generates an array of floats designed to be used in the `histogram()` function's `bins` parameter. ### linearBins() The [`linearBins()` function](/flux/v0/stdlib/universe/linearbins) generates a list of linearly separated floats. ```js linearBins(start: 0.0, width: 10.0, count: 10) // Generated list: [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, +Inf] ``` ### logarithmicBins() The [`logarithmicBins()` function](/flux/v0/stdlib/universe/logarithmicbins) generates a list of exponentially separated floats. ```js logarithmicBins(start: 1.0, factor: 2.0, count: 10, infinity: true) // Generated list: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, +Inf] ``` ## Histogram visualization The [Histogram visualization type](/influxdb/version/visualize-data/visualization-types/histogram/) automatically converts query results into a binned and segmented histogram. {{< img-hd src="/img/influxdb/2-0-visualizations-histogram-example.png" alt="Histogram visualization" />}} Use the [Histogram visualization controls](/influxdb/version/visualize-data/visualization-types/histogram/#histogram-controls) to specify the number of bins and define groups in bins. ### Histogram visualization data structure Because the Histogram visualization uses visualization controls to creates bins and groups, **do not** structure query results as histogram data. {{% note %}} Output of the [`histogram()` function](#histogram-function) is **not** compatible with the Histogram visualization type. View the example [below](#visualize-errors-by-severity). {{% /note %}} ## Examples ### Generate a histogram with linear bins ```js from(bucket: "example-bucket") |> range(start: -5m) |> filter(fn: (r) => r._measurement == "mem" and r._field == "used_percent") |> histogram(bins: linearBins(start: 65.5, width: 0.5, count: 20, infinity: false)) ``` ###### Output table ``` Table: keys: [_start, _stop, _field, _measurement, host] _start:time _stop:time _field:string _measurement:string host:string le:float _value:float ------------------------------ ------------------------------ ---------------------- ---------------------- ------------------------ ---------------------------- ---------------------------- 2018-11-07T22:19:58.423358000Z 2018-11-07T22:24:58.423358000Z used_percent mem Scotts-MacBook-Pro.local 65.5 5 2018-11-07T22:19:58.423358000Z 2018-11-07T22:24:58.423358000Z used_percent mem Scotts-MacBook-Pro.local 66 6 2018-11-07T22:19:58.423358000Z 2018-11-07T22:24:58.423358000Z used_percent mem Scotts-MacBook-Pro.local 66.5 8 2018-11-07T22:19:58.423358000Z 2018-11-07T22:24:58.423358000Z used_percent mem Scotts-MacBook-Pro.local 67 9 2018-11-07T22:19:58.423358000Z 2018-11-07T22:24:58.423358000Z used_percent mem Scotts-MacBook-Pro.local 67.5 9 2018-11-07T22:19:58.423358000Z 2018-11-07T22:24:58.423358000Z used_percent mem Scotts-MacBook-Pro.local 68 10 2018-11-07T22:19:58.423358000Z 2018-11-07T22:24:58.423358000Z used_percent mem Scotts-MacBook-Pro.local 68.5 12 2018-11-07T22:19:58.423358000Z 2018-11-07T22:24:58.423358000Z used_percent mem Scotts-MacBook-Pro.local 69 12 2018-11-07T22:19:58.423358000Z 2018-11-07T22:24:58.423358000Z used_percent mem Scotts-MacBook-Pro.local 69.5 15 2018-11-07T22:19:58.423358000Z 2018-11-07T22:24:58.423358000Z used_percent mem Scotts-MacBook-Pro.local 70 23 2018-11-07T22:19:58.423358000Z 2018-11-07T22:24:58.423358000Z used_percent mem Scotts-MacBook-Pro.local 70.5 30 2018-11-07T22:19:58.423358000Z 2018-11-07T22:24:58.423358000Z used_percent mem Scotts-MacBook-Pro.local 71 30 2018-11-07T22:19:58.423358000Z 2018-11-07T22:24:58.423358000Z used_percent mem Scotts-MacBook-Pro.local 71.5 30 2018-11-07T22:19:58.423358000Z 2018-11-07T22:24:58.423358000Z used_percent mem Scotts-MacBook-Pro.local 72 30 2018-11-07T22:19:58.423358000Z 2018-11-07T22:24:58.423358000Z used_percent mem Scotts-MacBook-Pro.local 72.5 30 2018-11-07T22:19:58.423358000Z 2018-11-07T22:24:58.423358000Z used_percent mem Scotts-MacBook-Pro.local 73 30 2018-11-07T22:19:58.423358000Z 2018-11-07T22:24:58.423358000Z used_percent mem Scotts-MacBook-Pro.local 73.5 30 2018-11-07T22:19:58.423358000Z 2018-11-07T22:24:58.423358000Z used_percent mem Scotts-MacBook-Pro.local 74 30 2018-11-07T22:19:58.423358000Z 2018-11-07T22:24:58.423358000Z used_percent mem Scotts-MacBook-Pro.local 74.5 30 2018-11-07T22:19:58.423358000Z 2018-11-07T22:24:58.423358000Z used_percent mem Scotts-MacBook-Pro.local 75 30 ``` ### Generate a histogram with logarithmic bins ```js from(bucket: "example-bucket") |> range(start: -5m) |> filter(fn: (r) => r._measurement == "mem" and r._field == "used_percent") |> histogram(bins: logarithmicBins(start: 0.5, factor: 2.0, count: 10, infinity: false)) ``` ###### Output table ``` Table: keys: [_start, _stop, _field, _measurement, host] _start:time _stop:time _field:string _measurement:string host:string le:float _value:float ------------------------------ ------------------------------ ---------------------- ---------------------- ------------------------ ---------------------------- ---------------------------- 2018-11-07T22:23:36.860664000Z 2018-11-07T22:28:36.860664000Z used_percent mem Scotts-MacBook-Pro.local 0.5 0 2018-11-07T22:23:36.860664000Z 2018-11-07T22:28:36.860664000Z used_percent mem Scotts-MacBook-Pro.local 1 0 2018-11-07T22:23:36.860664000Z 2018-11-07T22:28:36.860664000Z used_percent mem Scotts-MacBook-Pro.local 2 0 2018-11-07T22:23:36.860664000Z 2018-11-07T22:28:36.860664000Z used_percent mem Scotts-MacBook-Pro.local 4 0 2018-11-07T22:23:36.860664000Z 2018-11-07T22:28:36.860664000Z used_percent mem Scotts-MacBook-Pro.local 8 0 2018-11-07T22:23:36.860664000Z 2018-11-07T22:28:36.860664000Z used_percent mem Scotts-MacBook-Pro.local 16 0 2018-11-07T22:23:36.860664000Z 2018-11-07T22:28:36.860664000Z used_percent mem Scotts-MacBook-Pro.local 32 0 2018-11-07T22:23:36.860664000Z 2018-11-07T22:28:36.860664000Z used_percent mem Scotts-MacBook-Pro.local 64 2 2018-11-07T22:23:36.860664000Z 2018-11-07T22:28:36.860664000Z used_percent mem Scotts-MacBook-Pro.local 128 30 2018-11-07T22:23:36.860664000Z 2018-11-07T22:28:36.860664000Z used_percent mem Scotts-MacBook-Pro.local 256 30 ``` ### Visualize errors by severity Use the [Telegraf Syslog plugin](https://github.com/influxdata/telegraf/tree/master/plugins/inputs/syslog) to collect error information from your system. Query the `severity_code` field in the `syslog` measurement: ```js from(bucket: "example-bucket") |> range(start: v.timeRangeStart, stop: v.timeRangeStop) |> filter(fn: (r) => r._measurement == "syslog" and r._field == "severity_code") ``` In the Histogram visualization options, select `_time` as the **X Column** and `severity` as the **Group By** option: {{< img-hd src="/img/influxdb/2-0-visualizations-histogram-errors.png" alt="Logs by severity histogram" />}} ### Use Prometheus histograms in Flux _For information about working with Prometheus histograms in Flux, see [Work with Prometheus histograms](/flux/v0/prometheus/metric-types/histogram/)._