Use the following common queries to operate on columns: - [Find and count unique values in a column](#find-and-count-unique-values-in-a-column) - [Recalculate the _values column](#recalculate-the-_values-column) - [Calculate a new column](#calculate-a-new-column) {{% note %}} These examples use [NOAA water sample data](/influxdb/version/reference/sample-data/#noaa-water-sample-data). {{% /note %}} ## Find and count unique values in a column Find and count the number of unique values in a specified column. The following examples find and count unique locations where data was collected. ### Find unique values This query: - Uses [`group()`](/flux/v0/stdlib/universe/group/) to ungroup data and return results in a single table. - Uses [`keep()`](/flux/v0/stdlib/universe/keep/) and [`unique()`](/flux/v0/stdlib/universe/unique/) to return unique values in the specified column. ```js from(bucket: "noaa") |> range(start: -30d) |> group() |> keep(columns: ["location"]) |> unique(column: "location") ``` #### Example results | location | |:-------- | | coyote_creek | | santa_monica | ### Count unique values This query: - Uses [`group()`](/flux/v0/stdlib/universe/group/) to ungroup data and return results in a single table. - Uses [`keep()`](/flux/v0/stdlib/universe/keep/), [`unique()`](/flux/v0/stdlib/universe/unique/), and then [`count()`](/flux/v0/stdlib/universe/count/) to count the number of unique values. ```js from(bucket: "noaa") |> group() |> unique(column: "location") |> count(column: "location") ``` #### Example results | location | | ---------:| | 2 | ## Recalculate the _values column To recalculate the `_value` column, use the `with` operator in [`map()`](/flux/v0/stdlib/universe/map/) to overwrite the existing `_value` column. The following query: - Uses [`filter()`](/flux/v0/stdlib/universe/filter/) to filter the `average_temperature` measurement. - Uses [`map()`](/flux/v0/stdlib/universe/map/) to convert Fahrenheit temperature values into Celsius. ```js from(bucket: "noaa") |> filter(fn: (r) => r._measurement == "average_temperature") |> range(start: -30d) |> map(fn: (r) => ({r with _value: (float(v: r._value) - 32.0) * 5.0 / 9.0} )) ``` | _field | _measurement | _start | _stop | _time | location | _value | |:------ |:------------ |:------ |:----- |:----- |:-------- | ------: | | degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:00:00Z | coyote_creek | 27.77777777777778 | | degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:06:00Z | coyote_creek | 22.77777777777778 | | degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:12:00Z | coyote_creek | 30 | | degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:18:00Z | coyote_creek | 31.666666666666668 | | degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:24:00Z | coyote_creek | 25 | | degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:30:00Z | coyote_creek | 21.11111111111111 | | degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:36:00Z | coyote_creek | 28.88888888888889 | | degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:42:00Z | coyote_creek | 24.444444444444443 | | degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:48:00Z | coyote_creek | 29.444444444444443 | | degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:54:00Z | coyote_creek | 26.666666666666668 | | degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T01:00:00Z | coyote_creek | 21.11111111111111 | | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ## Calculate a new column To use values in a row to calculate and add a new column, use `map()`. This example below converts temperature from Fahrenheit to Celsius and maps the Celsius value to a new `celsius` column. The following query: - Uses [`filter()`](/flux/v0/stdlib/universe/filter/) to filter the `average_temperature` measurement. - Uses [`map()`](/flux/v0/stdlib/universe/map/) to create a new column calculated from existing values in each row. ```js from(bucket: "noaa") |> filter(fn: (r) => r._measurement == "average_temperature") |> range(start: -30d) |> map(fn: (r) => ({r with celsius: (r._value - 32.0) * 5.0 / 9.0})) ``` #### Example results | _start | _stop | _field | _measurement | location | _time | _value | celsius | |:------ |:----- |:------: |:------------: |:--------: |:----- | ------:| -------:| | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:00:00Z | 82 | 27.78 | | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:06:00Z | 73 | 22.78 | | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:12:00Z | 86 | 30.00 | | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:18:00Z | 89 | 31.67 | | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:24:00Z | 77 | 25.00 | | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:30:00Z | 70 | 21.11 | | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:36:00Z | 84 | 28.89 | | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:42:00Z | 76 | 24.44 | | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:48:00Z | 85 | 29.44 | | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:54:00Z | 80 | 26.67 | | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• |