restructured aggregate functions doc to address PR feedback

pull/180/head
Scott Anderson 2019-04-26 14:43:55 -06:00
parent a900719841
commit c0228077eb
1 changed files with 66 additions and 62 deletions

View File

@ -23,18 +23,23 @@ Aggregate functions all have the same basic characteristics:
## How reduce() works
The `reduce()` function operates on one row at a time using the function defined in
the [`fn` parameter](/v2.0/reference/flux/functions/built-in/transformations/aggregates/reduce/#fn).
The function maps keys to specific values using two objects specified by the
following parameters:
The `fn` function maps keys to specific values using two [objects](/v2.0/query-data/get-started/syntax-basics/#objects)
specified by the following parameters:
| Parameter | Description |
|:---------: |:----------- |
| `r` | An object that represents the row or record. |
| `accumulator` | An object that contains values used in each row's aggregate calculation. |
{{% note %}}
The `reduce()` function's [`identity` parameter](/v2.0/reference/flux/functions/built-in/transformations/aggregates/reduce/#identity)
defines the initial `accumulator` object.
{{% /note %}}
### Example reduce() function
The following example `reduce()` function produces a sum and product of all values
in an input table.
##### Example reduce() function
```js
|> reduce(fn: (r, accumulator) => ({
sum: r._value + accumulator.sum,
@ -44,23 +49,8 @@ defines the initial `accumulator` object.
)
```
After processing a row, `reduce()` produces an output object and uses it as the
`accumulator` object when processing the next row.
To illustrate how this function works, take this simplified table for example:
{{% note %}}
Because `reduce()` uses the output object as the accumulator when processing the next row,
keys mapped in the `reduce()` function must match the `identity` object's keys.
{{% /note %}}
This cycle repeats until `reduce()` processes all records in the table.
When it processes the last record, it outputs a table containing a single record
with columns for each mapped key.
### Reduce process example
The example `reduce()` function [above](#example-reduce-function), which produces
a sum and product of all values in a table, would work as follows:
##### Sample table
```txt
_time _value
----------------------- -------
@ -71,66 +61,80 @@ a sum and product of all values in a table, would work as follows:
2019-04-23T16:11:29.00Z 3.8
```
#### Processing the first row
`reduce()` uses the row data to define `r` and the `identity` object to define `accumulator`.
###### Input objects
The `fn` function uses the data in the first row to define the `r` object.
It defines the `accumulator` object using the `identity` parameter.
```js
r = { _time: 2019-04-23T16:10:49.00Z, _value: 1.6 }
accumulator = { sum : 0.0, product : 1.0 }
```
Input Objects
-------------
r: { _time: 2019-04-23T16:10:49.00Z, _value: 1.6 }
accumulator: { sum: 0.0, product: 1.0 }
Mappings
--------
###### Key mappings
It then uses the `r` and `accumulator` objects to populate values in the key mappings:
```js
// sum: r._value + accumulator.sum
sum: 1.6 + 0.0
product: 1.6 * 1.0
Output Object
-------------
// product: r._value * accumulator.product
product: 1.6 * 1.0
```
###### Output object
This produces an output object with the following key value pairs:
```js
{ sum: 1.6, product: 1.6 }
```
#### Processing the second row
`reduce()` uses the output object from the first row as the `accumulator` object
when processing the second row:
The function then processes the next row using this **output object** as the `accumulator`.
```
Input Objects
-------------
r: { _time: 2019-04-23T16:10:59.00Z, _value: 2.3 }
accumulator: { sum: 1.6, product: 1.6 }
{{% note %}}
Because `reduce()` uses the output object as the `accumulator` when processing the next row,
keys mapped in the `fn` function must match keys in the `identity` and `accumulator` objects.
{{% /note %}}
Mappings
--------
###### Processing the next row
```js
// Input objects for the second row
r = { _time: 2019-04-23T16:10:59.00Z, _value: 2.3 }
accumulator = { sum : 1.6, product : 1.6 }
// Key mappings for the second row
sum: 2.3 + 1.6
product: 2.3 * 1.6
Output Object
-------------
// Output object of the second row
{ sum: 3.9, product: 3.68 }
```
#### Processing all other rows
The cycle continues until all other rows are processed.
Using the [sample table](#sample-table), the final output object would be:
It then uses the new output object as the `accumulator` for the next row.
This cycle continues until all rows in the table are processed.
##### Final output object
```txt
##### Final output object and table
After all records in the table are processed, `reduce()` uses the final output object
to create a transformed table with one row and columns for each mapped key.
```js
// Final output object
{ sum: 9.6, product: 11.74656 }
```
And the output table would look like:
##### Output table
```txt
// Output table
sum product
---- ---------
9.6 11.74656
```
{{% note %}}
Because `_time` is not part of the group key and is not mapped in the `reduce()` function,
it is dropped from the output table.
#### What happened to the \_time column?
The `reduce()` function only keeps columns that are:
1. Are part of the input table's [group key](/v2.0/query-data/get-started/#group-keys).
2. Explicitly mapped in the `fn` function.
It drops all other columns.
Because `_time` is not part of the group key and is not mapped in the `fn` function,
it isn't included in the output table.
{{% /note %}}
## Custom aggregate function examples
@ -138,7 +142,7 @@ To create custom aggregate functions, use principles outlined in
[Creating custom functions](/v2.0/query-data/guides/custom-functions)
and the `reduce()` function to aggregate rows in each input table.
### Custom averaging function
### Create a custom average function
This example illustrates how to create a function that averages values in a table.
_This is meant for demonstration purposes only.
The built-in [`mean()` function](/v2.0/reference/flux/functions/built-in/tranformations/aggregates/mean/)
@ -171,12 +175,12 @@ average = (tables=<-, outputField="average") =>
avg: accumulator.sum / accumulator.count
})
)
// Drop the sum and count columns since they are no longer needed
// Drop the sum and the count columns since they are no longer needed
|> drop(columns: ["sum", "count"])
// Set the _field column of the output table to whatever
// is provided in the outputField parameter
// Set the _field column of the output table to to the value
// provided in the outputField parameter
|> set(key: "_field", value: outputField)
// Rename to avg column to _value
// Rename avg column to _value
|> rename(columns: {avg: "_value"})
```
{{% /code-tab-content %}}
@ -206,7 +210,7 @@ average = (tables=<-, outputField="average") =>
### Aggregate multiple columns
Built-in aggregate functions only operate on one column.
Use the `reduce()` function to create a custom aggregate function that aggregates multiple columns.
Use `reduce()` to create a custom aggregate function that aggregates multiple columns.
The following function expects input tables to have `c1_value` and `c2_value`
columns and generates an average for each.
@ -233,8 +237,8 @@ multiAvg = (tables=<-) =>
```
### Aggregate gross and net profit
This example aggregates gross and net profit.
It expects `profit` and `expenses` columns in the input tables.
Use `reduce()` to create a function that aggregates gross and net profit.
This example expects `profit` and `expenses` columns in the input tables.
```js
profitSummary = (tables=<-) =>