restructured aggregate functions doc to address PR feedback
parent
a900719841
commit
c0228077eb
|
@ -23,18 +23,23 @@ Aggregate functions all have the same basic characteristics:
|
|||
## How reduce() works
|
||||
The `reduce()` function operates on one row at a time using the function defined in
|
||||
the [`fn` parameter](/v2.0/reference/flux/functions/built-in/transformations/aggregates/reduce/#fn).
|
||||
The function maps keys to specific values using two objects specified by the
|
||||
following parameters:
|
||||
The `fn` function maps keys to specific values using two [objects](/v2.0/query-data/get-started/syntax-basics/#objects)
|
||||
specified by the following parameters:
|
||||
|
||||
| Parameter | Description |
|
||||
|:---------: |:----------- |
|
||||
| `r` | An object that represents the row or record. |
|
||||
| `accumulator` | An object that contains values used in each row's aggregate calculation. |
|
||||
|
||||
{{% note %}}
|
||||
The `reduce()` function's [`identity` parameter](/v2.0/reference/flux/functions/built-in/transformations/aggregates/reduce/#identity)
|
||||
defines the initial `accumulator` object.
|
||||
{{% /note %}}
|
||||
|
||||
### Example reduce() function
|
||||
The following example `reduce()` function produces a sum and product of all values
|
||||
in an input table.
|
||||
|
||||
##### Example reduce() function
|
||||
```js
|
||||
|> reduce(fn: (r, accumulator) => ({
|
||||
sum: r._value + accumulator.sum,
|
||||
|
@ -44,23 +49,8 @@ defines the initial `accumulator` object.
|
|||
)
|
||||
```
|
||||
|
||||
After processing a row, `reduce()` produces an output object and uses it as the
|
||||
`accumulator` object when processing the next row.
|
||||
To illustrate how this function works, take this simplified table for example:
|
||||
|
||||
{{% note %}}
|
||||
Because `reduce()` uses the output object as the accumulator when processing the next row,
|
||||
keys mapped in the `reduce()` function must match the `identity` object's keys.
|
||||
{{% /note %}}
|
||||
|
||||
This cycle repeats until `reduce()` processes all records in the table.
|
||||
When it processes the last record, it outputs a table containing a single record
|
||||
with columns for each mapped key.
|
||||
|
||||
### Reduce process example
|
||||
The example `reduce()` function [above](#example-reduce-function), which produces
|
||||
a sum and product of all values in a table, would work as follows:
|
||||
|
||||
##### Sample table
|
||||
```txt
|
||||
_time _value
|
||||
----------------------- -------
|
||||
|
@ -71,66 +61,80 @@ a sum and product of all values in a table, would work as follows:
|
|||
2019-04-23T16:11:29.00Z 3.8
|
||||
```
|
||||
|
||||
#### Processing the first row
|
||||
`reduce()` uses the row data to define `r` and the `identity` object to define `accumulator`.
|
||||
###### Input objects
|
||||
The `fn` function uses the data in the first row to define the `r` object.
|
||||
It defines the `accumulator` object using the `identity` parameter.
|
||||
|
||||
```js
|
||||
r = { _time: 2019-04-23T16:10:49.00Z, _value: 1.6 }
|
||||
accumulator = { sum : 0.0, product : 1.0 }
|
||||
```
|
||||
Input Objects
|
||||
-------------
|
||||
r: { _time: 2019-04-23T16:10:49.00Z, _value: 1.6 }
|
||||
accumulator: { sum: 0.0, product: 1.0 }
|
||||
|
||||
Mappings
|
||||
--------
|
||||
###### Key mappings
|
||||
It then uses the `r` and `accumulator` objects to populate values in the key mappings:
|
||||
```js
|
||||
// sum: r._value + accumulator.sum
|
||||
sum: 1.6 + 0.0
|
||||
product: 1.6 * 1.0
|
||||
|
||||
Output Object
|
||||
-------------
|
||||
// product: r._value * accumulator.product
|
||||
product: 1.6 * 1.0
|
||||
```
|
||||
|
||||
###### Output object
|
||||
This produces an output object with the following key value pairs:
|
||||
|
||||
```js
|
||||
{ sum: 1.6, product: 1.6 }
|
||||
```
|
||||
|
||||
#### Processing the second row
|
||||
`reduce()` uses the output object from the first row as the `accumulator` object
|
||||
when processing the second row:
|
||||
The function then processes the next row using this **output object** as the `accumulator`.
|
||||
|
||||
```
|
||||
Input Objects
|
||||
-------------
|
||||
r: { _time: 2019-04-23T16:10:59.00Z, _value: 2.3 }
|
||||
accumulator: { sum: 1.6, product: 1.6 }
|
||||
{{% note %}}
|
||||
Because `reduce()` uses the output object as the `accumulator` when processing the next row,
|
||||
keys mapped in the `fn` function must match keys in the `identity` and `accumulator` objects.
|
||||
{{% /note %}}
|
||||
|
||||
Mappings
|
||||
--------
|
||||
###### Processing the next row
|
||||
```js
|
||||
// Input objects for the second row
|
||||
r = { _time: 2019-04-23T16:10:59.00Z, _value: 2.3 }
|
||||
accumulator = { sum : 1.6, product : 1.6 }
|
||||
|
||||
// Key mappings for the second row
|
||||
sum: 2.3 + 1.6
|
||||
product: 2.3 * 1.6
|
||||
|
||||
Output Object
|
||||
-------------
|
||||
// Output object of the second row
|
||||
{ sum: 3.9, product: 3.68 }
|
||||
```
|
||||
|
||||
#### Processing all other rows
|
||||
The cycle continues until all other rows are processed.
|
||||
Using the [sample table](#sample-table), the final output object would be:
|
||||
It then uses the new output object as the `accumulator` for the next row.
|
||||
This cycle continues until all rows in the table are processed.
|
||||
|
||||
##### Final output object
|
||||
```txt
|
||||
##### Final output object and table
|
||||
After all records in the table are processed, `reduce()` uses the final output object
|
||||
to create a transformed table with one row and columns for each mapped key.
|
||||
|
||||
```js
|
||||
// Final output object
|
||||
{ sum: 9.6, product: 11.74656 }
|
||||
```
|
||||
|
||||
And the output table would look like:
|
||||
|
||||
##### Output table
|
||||
```txt
|
||||
// Output table
|
||||
sum product
|
||||
---- ---------
|
||||
9.6 11.74656
|
||||
```
|
||||
|
||||
{{% note %}}
|
||||
Because `_time` is not part of the group key and is not mapped in the `reduce()` function,
|
||||
it is dropped from the output table.
|
||||
#### What happened to the \_time column?
|
||||
The `reduce()` function only keeps columns that are:
|
||||
|
||||
1. Are part of the input table's [group key](/v2.0/query-data/get-started/#group-keys).
|
||||
2. Explicitly mapped in the `fn` function.
|
||||
|
||||
It drops all other columns.
|
||||
Because `_time` is not part of the group key and is not mapped in the `fn` function,
|
||||
it isn't included in the output table.
|
||||
{{% /note %}}
|
||||
|
||||
## Custom aggregate function examples
|
||||
|
@ -138,7 +142,7 @@ To create custom aggregate functions, use principles outlined in
|
|||
[Creating custom functions](/v2.0/query-data/guides/custom-functions)
|
||||
and the `reduce()` function to aggregate rows in each input table.
|
||||
|
||||
### Custom averaging function
|
||||
### Create a custom average function
|
||||
This example illustrates how to create a function that averages values in a table.
|
||||
_This is meant for demonstration purposes only.
|
||||
The built-in [`mean()` function](/v2.0/reference/flux/functions/built-in/tranformations/aggregates/mean/)
|
||||
|
@ -171,12 +175,12 @@ average = (tables=<-, outputField="average") =>
|
|||
avg: accumulator.sum / accumulator.count
|
||||
})
|
||||
)
|
||||
// Drop the sum and count columns since they are no longer needed
|
||||
// Drop the sum and the count columns since they are no longer needed
|
||||
|> drop(columns: ["sum", "count"])
|
||||
// Set the _field column of the output table to whatever
|
||||
// is provided in the outputField parameter
|
||||
// Set the _field column of the output table to to the value
|
||||
// provided in the outputField parameter
|
||||
|> set(key: "_field", value: outputField)
|
||||
// Rename to avg column to _value
|
||||
// Rename avg column to _value
|
||||
|> rename(columns: {avg: "_value"})
|
||||
```
|
||||
{{% /code-tab-content %}}
|
||||
|
@ -206,7 +210,7 @@ average = (tables=<-, outputField="average") =>
|
|||
|
||||
### Aggregate multiple columns
|
||||
Built-in aggregate functions only operate on one column.
|
||||
Use the `reduce()` function to create a custom aggregate function that aggregates multiple columns.
|
||||
Use `reduce()` to create a custom aggregate function that aggregates multiple columns.
|
||||
|
||||
The following function expects input tables to have `c1_value` and `c2_value`
|
||||
columns and generates an average for each.
|
||||
|
@ -233,8 +237,8 @@ multiAvg = (tables=<-) =>
|
|||
```
|
||||
|
||||
### Aggregate gross and net profit
|
||||
This example aggregates gross and net profit.
|
||||
It expects `profit` and `expenses` columns in the input tables.
|
||||
Use `reduce()` to create a function that aggregates gross and net profit.
|
||||
This example expects `profit` and `expenses` columns in the input tables.
|
||||
|
||||
```js
|
||||
profitSummary = (tables=<-) =>
|
||||
|
|
Loading…
Reference in New Issue