commit
bb539baef9
|
@ -27,7 +27,7 @@ This article describes how to get started with InfluxDB OSS. To get started with
|
|||
### Download and install InfluxDB v2.0 alpha
|
||||
Download InfluxDB v2.0 alpha for macOS.
|
||||
|
||||
<a class="btn download" href="https://dl.influxdata.com/influxdb/releases/influxdb_2.0.0-alpha.16_darwin_amd64.tar.gz" download>InfluxDB v2.0 alpha (macOS)</a>
|
||||
<a class="btn download" href="https://dl.influxdata.com/influxdb/releases/influxdb_2.0.0-alpha.17_darwin_amd64.tar.gz" download>InfluxDB v2.0 alpha (macOS)</a>
|
||||
|
||||
### Unpackage the InfluxDB binaries
|
||||
Unpackage the downloaded archive.
|
||||
|
@ -36,7 +36,7 @@ _**Note:** The following commands are examples. Adjust the file paths to your ow
|
|||
|
||||
```sh
|
||||
# Unpackage contents to the current working directory
|
||||
gunzip -c ~/Downloads/influxdb_2.0.0-alpha.16_darwin_amd64.tar.gz | tar xopf -
|
||||
gunzip -c ~/Downloads/influxdb_2.0.0-alpha.17_darwin_amd64.tar.gz | tar xopf -
|
||||
```
|
||||
|
||||
If you choose, you can place `influx` and `influxd` in your `$PATH`.
|
||||
|
@ -44,7 +44,7 @@ You can also prefix the executables with `./` to run then in place.
|
|||
|
||||
```sh
|
||||
# (Optional) Copy the influx and influxd binary to your $PATH
|
||||
sudo cp influxdb_2.0.0-alpha.16_darwin_amd64/{influx,influxd} /usr/local/bin/
|
||||
sudo cp influxdb_2.0.0-alpha.17_darwin_amd64/{influx,influxd} /usr/local/bin/
|
||||
```
|
||||
|
||||
{{% note %}}
|
||||
|
@ -90,8 +90,8 @@ influxd --reporting-disabled
|
|||
### Download and install InfluxDB v2.0 alpha
|
||||
Download the InfluxDB v2.0 alpha package appropriate for your chipset.
|
||||
|
||||
<a class="btn download" href="https://dl.influxdata.com/influxdb/releases/influxdb_2.0.0-alpha.16_linux_amd64.tar.gz" download >InfluxDB v2.0 alpha (amd64)</a>
|
||||
<a class="btn download" href="https://dl.influxdata.com/influxdb/releases/influxdb_2.0.0-alpha.16_linux_arm64.tar.gz" download >InfluxDB v2.0 alpha (arm)</a>
|
||||
<a class="btn download" href="https://dl.influxdata.com/influxdb/releases/influxdb_2.0.0-alpha.17_linux_amd64.tar.gz" download >InfluxDB v2.0 alpha (amd64)</a>
|
||||
<a class="btn download" href="https://dl.influxdata.com/influxdb/releases/influxdb_2.0.0-alpha.17_linux_arm64.tar.gz" download >InfluxDB v2.0 alpha (arm)</a>
|
||||
|
||||
### Place the executables in your $PATH
|
||||
Unpackage the downloaded archive and place the `influx` and `influxd` executables in your system `$PATH`.
|
||||
|
@ -100,10 +100,10 @@ _**Note:** The following commands are examples. Adjust the file names, paths, an
|
|||
|
||||
```sh
|
||||
# Unpackage contents to the current working directory
|
||||
tar xvzf path/to/influxdb_2.0.0-alpha.16_linux_amd64.tar.gz
|
||||
tar xvzf path/to/influxdb_2.0.0-alpha.17_linux_amd64.tar.gz
|
||||
|
||||
# Copy the influx and influxd binary to your $PATH
|
||||
sudo cp influxdb_2.0.0-alpha.16_linux_amd64/{influx,influxd} /usr/local/bin/
|
||||
sudo cp influxdb_2.0.0-alpha.17_linux_amd64/{influx,influxd} /usr/local/bin/
|
||||
```
|
||||
|
||||
{{% note %}}
|
||||
|
|
|
@ -16,12 +16,13 @@ influxd inspect [subcommand]
|
|||
```
|
||||
|
||||
## Subcommands
|
||||
| Subcommand | Description |
|
||||
|:---------- |:----------- |
|
||||
| [export-blocks](/v2.0/reference/cli/influxd/inspect/export-blocks/) | Export block data |
|
||||
| [report-tsm](/v2.0/reference/cli/influxd/inspect/report-tsm/) | Run TSM report |
|
||||
| [verify-tsm](/v2.0/reference/cli/influxd/inspect/verify-tsm/) | Check the consistency of TSM files |
|
||||
| [verify-wal](/v2.0/reference/cli/influxd/inspect/verify-wal/) | Check for corrupt WAL files |
|
||||
| Subcommand | Description |
|
||||
|:---------- |:----------- |
|
||||
| [export-blocks](/v2.0/reference/cli/influxd/inspect/export-blocks/) | Export block data |
|
||||
| [report-tsi](/v2.0/reference/cli/influxd/inspect/report-tsi/) | Report the cardinality of TSI files |
|
||||
| [report-tsm](/v2.0/reference/cli/influxd/inspect/report-tsm/) | Run TSM report |
|
||||
| [verify-tsm](/v2.0/reference/cli/influxd/inspect/verify-tsm/) | Check the consistency of TSM files |
|
||||
| [verify-wal](/v2.0/reference/cli/influxd/inspect/verify-wal/) | Check for corrupt WAL files |
|
||||
|
||||
## Flags
|
||||
| Flag | Description |
|
||||
|
|
|
@ -0,0 +1,44 @@
|
|||
---
|
||||
title: influxd inspect report-tsi
|
||||
description: >
|
||||
The `influxd inspect report-tsi` command analyzes Time Series Index (TSI) files
|
||||
in a storage directory and reports the cardinality of data stored in the files.
|
||||
v2.0/tags: [tsi, cardinality, inspect]
|
||||
menu:
|
||||
v2_0_ref:
|
||||
parent: influxd inspect
|
||||
weight: 301
|
||||
---
|
||||
|
||||
The `influxd inspect report-tsi` command analyzes Time Series Index (TSI) files
|
||||
in a storage directory and reports the cardinality of data stored in the files
|
||||
by organization and bucket.
|
||||
|
||||
## Output details
|
||||
`influxd inspect report-tsi` outputs the following:
|
||||
|
||||
- All organizations and buckets in the index.
|
||||
- The series cardinality within each organization and bucket.
|
||||
- Time to read the index.
|
||||
|
||||
When the `--measurements` flag is included, series cardinality is grouped by:
|
||||
|
||||
- organization
|
||||
- bucket
|
||||
- measurement
|
||||
|
||||
## Usage
|
||||
```sh
|
||||
influxd inspect report-tsi [flags]
|
||||
```
|
||||
|
||||
## Flags
|
||||
| Flag | Description | Input Type |
|
||||
|:---- |:----------- |:----------:|
|
||||
| `--bucket-id` | Process data for specified bucket ID. _Requires `org-id` flag to be set._ | string |
|
||||
| `-h`, `--help` | View help for `report-tsi`. | |
|
||||
| `-m`, `--measurements` | Group cardinality by measurements. | |
|
||||
| `-o`, `--org-id` | Process data for specified organization ID. | string |
|
||||
| `--path` | Specify path to index. Defaults to `~/.influxdbv2/engine/index`. | string |
|
||||
| `--series-file` | Specify path to series file. Defaults to `~/.influxdbv2/engine/_series`. | string |
|
||||
| `-t`, `-top` | Limit results to the top n. | integer |
|
|
@ -10,7 +10,8 @@ menu:
|
|||
weight: 501
|
||||
---
|
||||
|
||||
The `aggregateWindow()` function applies an aggregate function to fixed windows of time.
|
||||
The `aggregateWindow()` function applies an aggregate or selector function
|
||||
(any function with a `column` parameter) to fixed windows of time.
|
||||
|
||||
_**Function type:** Aggregate_
|
||||
|
||||
|
@ -25,7 +26,7 @@ aggregateWindow(
|
|||
)
|
||||
```
|
||||
|
||||
As data is windowed into separate tables and aggregated, the `_time` column is dropped from each group key.
|
||||
As data is windowed into separate tables and processed, the `_time` column is dropped from each group key.
|
||||
This function copies the timestamp from a remaining column into the `_time` column.
|
||||
View the [function definition](#function-definition).
|
||||
|
||||
|
@ -48,7 +49,7 @@ The [aggregate function](/v2.0/reference/flux/functions/built-in/transformations
|
|||
_**Data type:** Function_
|
||||
|
||||
{{% note %}}
|
||||
Only aggregate functions with a `column` parameter (singular) work with `aggregateWindow()`.
|
||||
Only aggregate and selector functions with a `column` parameter (singular) work with `aggregateWindow()`.
|
||||
{{% /note %}}
|
||||
|
||||
### column
|
||||
|
@ -95,11 +96,10 @@ from(bucket: "example-bucket")
|
|||
fn: mean
|
||||
)
|
||||
```
|
||||
###### Specifying parameters of the aggregate function
|
||||
|
||||
To use `aggregateWindow()` aggregate functions that don't provide defaults for required parameters,
|
||||
for the `fn` parameter, define an anonymous function with `columns` and `tables` parameters
|
||||
that pipe-forwards tables into the aggregate function with all required parameters defined:
|
||||
###### Specify parameters of the aggregate function
|
||||
To use functions that don't provide defaults for required parameters with `aggregateWindow()`,
|
||||
define an anonymous function with `column` and `tables` parameters that pipe-forward
|
||||
tables into the aggregate or selector function with all required parameters defined:
|
||||
|
||||
```js
|
||||
from(bucket: "example-bucket")
|
||||
|
|
|
@ -0,0 +1,110 @@
|
|||
---
|
||||
title: chandeMomentumOscillator() function
|
||||
description: >
|
||||
The `chandeMomentumOscillator()` function applies the technical momentum indicator
|
||||
developed by Tushar Chande.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: chandeMomentumOscillator
|
||||
parent: built-in-aggregates
|
||||
weight: 501
|
||||
related:
|
||||
- https://docs.influxdata.com/influxdb/v1.7/query_language/functions/#triple-exponential-moving-average, InfluxQL CHANDE_MOMENTUM_OSCILLATOR()
|
||||
---
|
||||
|
||||
The `chandeMomentumOscillator()` function applies the technical momentum indicator
|
||||
developed by Tushar Chande.
|
||||
|
||||
_**Function type:** Aggregate_
|
||||
|
||||
```js
|
||||
chandeMomentumOscillator(
|
||||
n: 10,
|
||||
columns: ["_value"]
|
||||
)
|
||||
```
|
||||
|
||||
The Chande Momentum Oscillator (CMO) indicator calculates the difference between
|
||||
the sum of all recent data points with values greater than the median value of the data set
|
||||
and the sum of all recent data points with values lower than the median value of the data set,
|
||||
then divides the result by the sum of all data movement over a given time period.
|
||||
It then multiplies the result by 100 and returns a value between -100 and +100.
|
||||
|
||||
## Parameters
|
||||
|
||||
### n
|
||||
The period or number of points to use in the calculation.
|
||||
|
||||
_**Data type: Integer**_
|
||||
|
||||
### columns
|
||||
The columns to operate on.
|
||||
Defaults to `["_value"]`.
|
||||
|
||||
_**Data type: Array of Strings**_
|
||||
|
||||
## Examples
|
||||
|
||||
#### Table transformation with a ten point Chande Momentum Oscillator
|
||||
|
||||
###### Input table
|
||||
| _time | _value |
|
||||
|:-----:|:------:|
|
||||
| 0001 | 1 |
|
||||
| 0002 | 2 |
|
||||
| 0003 | 3 |
|
||||
| 0004 | 4 |
|
||||
| 0005 | 5 |
|
||||
| 0006 | 6 |
|
||||
| 0007 | 7 |
|
||||
| 0008 | 8 |
|
||||
| 0009 | 9 |
|
||||
| 0010 | 10 |
|
||||
| 0011 | 11 |
|
||||
| 0012 | 12 |
|
||||
| 0013 | 13 |
|
||||
| 0014 | 14 |
|
||||
| 0015 | 15 |
|
||||
| 0016 | 14 |
|
||||
| 0017 | 13 |
|
||||
| 0018 | 12 |
|
||||
| 0019 | 11 |
|
||||
| 0020 | 10 |
|
||||
| 0021 | 9 |
|
||||
| 0022 | 8 |
|
||||
| 0023 | 7 |
|
||||
| 0024 | 6 |
|
||||
| 0025 | 5 |
|
||||
| 0026 | 4 |
|
||||
| 0027 | 3 |
|
||||
| 0028 | 2 |
|
||||
| 0029 | 1 |
|
||||
|
||||
###### Query
|
||||
```js
|
||||
// ...
|
||||
|> chandeMomentumOscillator(n: 10)
|
||||
```
|
||||
|
||||
###### Output table
|
||||
| _time | _value |
|
||||
|:-----:|:------:|
|
||||
| 0011 | 100 |
|
||||
| 0012 | 100 |
|
||||
| 0013 | 100 |
|
||||
| 0014 | 100 |
|
||||
| 0015 | 100 |
|
||||
| 0016 | 80 |
|
||||
| 0017 | 60 |
|
||||
| 0018 | 40 |
|
||||
| 0019 | 20 |
|
||||
| 0020 | 0 |
|
||||
| 0021 | -20 |
|
||||
| 0022 | -40 |
|
||||
| 0023 | -60 |
|
||||
| 0024 | -80 |
|
||||
| 0025 | -100 |
|
||||
| 0026 | -100 |
|
||||
| 0027 | -100 |
|
||||
| 0028 | -100 |
|
||||
| 0029 | -100 |
|
|
@ -17,7 +17,11 @@ _**Function type:** Aggregate_
|
|||
_**Output data type:** Float_
|
||||
|
||||
```js
|
||||
difference(nonNegative: false, columns: ["_value"])
|
||||
difference(
|
||||
nonNegative: false,
|
||||
columns: ["_value"],
|
||||
keepFirst: false
|
||||
)
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
@ -34,6 +38,13 @@ Defaults to `["_value"]`.
|
|||
|
||||
_**Data type:** Array of Strings_
|
||||
|
||||
### keepFirst
|
||||
Indicates the first row should be kept.
|
||||
If `true`, the difference will be `null`.
|
||||
Defaults to `false`.
|
||||
|
||||
_**Data type:** Boolean_
|
||||
|
||||
## Subtraction rules for numeric types
|
||||
- The difference between two non-null values is their algebraic difference;
|
||||
or `null`, if the result is negative and `nonNegative: true`;
|
||||
|
@ -90,6 +101,20 @@ from(bucket: "example-bucket")
|
|||
| 0004 | 6 | tv |
|
||||
| 0005 | null | tv |
|
||||
|
||||
|
||||
#### With keepFirst set to true
|
||||
```js
|
||||
|> difference(nonNegative: false, keepfirst: true):
|
||||
```
|
||||
###### Output table
|
||||
| _time | _value | tag |
|
||||
|:-----:|:------:|:---:|
|
||||
| 0001 | null | tv |
|
||||
| 0002 | null | tv |
|
||||
| 0003 | -2 | tv |
|
||||
| 0004 | 6 | tv |
|
||||
| 0005 | null | tv |
|
||||
|
||||
<hr style="margin-top:4rem"/>
|
||||
|
||||
##### Related InfluxQL functions and statements:
|
||||
|
|
|
@ -0,0 +1,63 @@
|
|||
---
|
||||
title: doubleEMA() function
|
||||
description: >
|
||||
The `doubleEMA()` function calculates the exponential moving average of values
|
||||
grouped into `n` number of points, giving more weight to recent data at double
|
||||
the rate of `exponentialMovingAverage()`.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: doubleEMA
|
||||
parent: built-in-aggregates
|
||||
weight: 501
|
||||
related:
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/movingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/tripleema/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/timedmovingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/exponentialmovingaverage/
|
||||
- https://docs.influxdata.com/influxdb/v1.7/query_language/functions/#double-exponential-moving-average, InfluxQL DOUBLE_EXPONENTIAL_MOVING_AVERAGE()
|
||||
---
|
||||
|
||||
The `doubleEMA()` function calculates the exponential moving average of values in
|
||||
the `_value` column grouped into `n` number of points, giving more weight to recent
|
||||
data at double the rate of [`exponentialMovingAverage()`](/v2.0/reference/flux/functions/built-in/transformations/aggregates/exponentialmovingaverage/).
|
||||
|
||||
_**Function type:** Aggregate_
|
||||
|
||||
```js
|
||||
doubleEMA(n: 5)
|
||||
```
|
||||
|
||||
##### Double exponential moving average rules
|
||||
- A double exponential moving average is defined as `doubleEMA = 2 * EMA_N - EMA of EMA_N`.
|
||||
- `EMA` is an exponential moving average.
|
||||
- `N = n` is the period used to calculate the EMA.
|
||||
- A true double exponential moving average requires at least `2 * n - 1` values.
|
||||
If not enough values exist to calculate the double EMA, it returns a `NaN` value.
|
||||
- `doubleEMA()` inherits all [exponential moving average rules](/v2.0/reference/flux/functions/built-in/transformations/aggregates/exponentialmovingaverage/#exponential-moving-average-rules).
|
||||
|
||||
## Parameters
|
||||
|
||||
### n
|
||||
The number of points to average.
|
||||
|
||||
_**Data type:** Integer_
|
||||
|
||||
## Examples
|
||||
|
||||
#### Calculate a five point double exponential moving average
|
||||
```js
|
||||
from(bucket: "example-bucket"):
|
||||
|> range(start: -12h)
|
||||
|> doubleEMA(n: 5)
|
||||
```
|
||||
|
||||
## Function definition
|
||||
```js
|
||||
doubleEMA = (n, tables=<-) =>
|
||||
tables
|
||||
|> exponentialMovingAverage(n:n)
|
||||
|> duplicate(column:"_value", as:"ema")
|
||||
|> exponentialMovingAverage(n:n)
|
||||
|> map(fn: (r) => ({r with _value: 2.0 * r.ema - r._value}))
|
||||
|> drop(columns: ["ema"])
|
||||
```
|
|
@ -1,8 +1,8 @@
|
|||
---
|
||||
title: exponentialMovingAverage() function
|
||||
description: >
|
||||
The `exponentialMovingAverage()` function calculates the exponential moving average
|
||||
of values grouped into `n` number of points, giving more weight to recent data.
|
||||
The `exponentialMovingAverage()` function calculates the exponential moving average of values
|
||||
in the `_value` column grouped into `n` number of points, giving more weight to recent data.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: exponentialMovingAverage
|
||||
|
@ -11,22 +11,21 @@ weight: 501
|
|||
related:
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/movingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/timedmovingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/doubleema/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/tripleema/
|
||||
- https://docs.influxdata.com/influxdb/v1.7/query_language/functions/#exponential-moving-average, InfluxQL EXPONENTIAL_MOVING_AVERAGE()
|
||||
---
|
||||
|
||||
The `exponentialMovingAverage()` function calculates the exponential moving average
|
||||
of values grouped into `n` number of points, giving more weight to recent data.
|
||||
The `exponentialMovingAverage()` function calculates the exponential moving average of values
|
||||
in the `_value` column grouped into `n` number of points, giving more weight to recent data.
|
||||
|
||||
_**Function type:** Aggregate_
|
||||
|
||||
```js
|
||||
exponentialMovingAverage(
|
||||
n: 5,
|
||||
columns: ["_value"]
|
||||
)
|
||||
exponentialMovingAverage(n: 5)
|
||||
```
|
||||
|
||||
##### Exponential moving average rules:
|
||||
##### Exponential moving average rules
|
||||
- The first value of an exponential moving average over `n` values is the
|
||||
algebraic mean of `n` values.
|
||||
- Subsequent values are calculated as `y(t) = x(t) * k + y(t-1) * (1 - k)`, where:
|
||||
|
@ -43,11 +42,6 @@ The number of points to average.
|
|||
|
||||
_**Data type:** Integer_
|
||||
|
||||
### columns
|
||||
Columns to operate on. _Defaults to `["_value"]`_.
|
||||
|
||||
_**Data type:** Array of Strings_
|
||||
|
||||
## Examples
|
||||
|
||||
#### Calculate a five point exponential moving average
|
||||
|
@ -60,23 +54,20 @@ from(bucket: "example-bucket"):
|
|||
#### Table transformation with a two point exponential moving average
|
||||
|
||||
###### Input table:
|
||||
| _time | A | B | C | tag |
|
||||
|:-----:|:----:|:----:|:----:|:---:|
|
||||
| 0001 | 2 | null | 2 | tv |
|
||||
| 0002 | null | 10 | 4 | tv |
|
||||
| 0003 | 8 | 20 | 5 | tv |
|
||||
| _time | tag | _value |
|
||||
|:-----:|:---:|:------:|
|
||||
| 0001 | tv | null |
|
||||
| 0002 | tv | 10 |
|
||||
| 0003 | tv | 20 |
|
||||
|
||||
###### Query:
|
||||
```js
|
||||
// ...
|
||||
|> exponentialMovingAverage(
|
||||
n: 2,
|
||||
columns: ["A", "B", "C"]
|
||||
)
|
||||
|> exponentialMovingAverage(n: 2)
|
||||
```
|
||||
|
||||
###### Output table:
|
||||
| _time | A | B | C | tag |
|
||||
|:-----:|:----:|:----:|:----:|:---:|
|
||||
| 0002 | 2 | 10 | 3 | tv |
|
||||
| 0003 | 6 | 16.67| 4.33 | tv |
|
||||
| _time | tag | _value |
|
||||
|:-----:|:---:|:------:|
|
||||
| 0002 | tv | 10 |
|
||||
| 0003 | tv | 16.67 |
|
||||
|
|
|
@ -0,0 +1,114 @@
|
|||
---
|
||||
title: holtWinters() function
|
||||
description: >
|
||||
The `holtWinters()` function applies the Holt-Winters forecasting method to input tables.
|
||||
aliases:
|
||||
- /v2.0/reference/flux/functions/transformations/aggregates/holtwinters
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: holtWinters
|
||||
parent: built-in-aggregates
|
||||
weight: 501
|
||||
related:
|
||||
- https://docs.influxdata.com/influxdb/latest/query_language/functions/#holt-winters, InfluxQL HOLT_WINTERS()
|
||||
---
|
||||
|
||||
The `holtWinters()` function applies the Holt-Winters forecasting method to input tables.
|
||||
|
||||
_**Function type:** Aggregate_
|
||||
_**Output data type:** Float_
|
||||
|
||||
```js
|
||||
holtWinters(
|
||||
n: 10,
|
||||
seasonality: 4,
|
||||
interval: 30d,
|
||||
withFit: false,
|
||||
timeColumn: "_time",
|
||||
column: "_value",
|
||||
)
|
||||
```
|
||||
|
||||
The Holt-Winters method predicts [`n`](#n) seasonally-adjusted values for the
|
||||
specified [`column`](#column) at the specified [`interval`](#interval).
|
||||
For example, if `interval` is `6m` and `n` is `3`, results include three predicted
|
||||
values six minutes apart.
|
||||
|
||||
#### Seasonality
|
||||
[`seasonality`](#seasonality) delimits the length of a seasonal pattern according to `interval`.
|
||||
If your `interval` is `2m` and `seasonality` is `4`, then the seasonal pattern occurs every
|
||||
eight minutes or every four data points.
|
||||
If data doesn't have a seasonal pattern, set `seasonality` to `0`.
|
||||
|
||||
#### Space values evenly in time
|
||||
`holtWinters()` expects values evenly spaced in time.
|
||||
To ensure `holtWinters()` values are spaced evenly in time, the following rules apply:
|
||||
|
||||
- Data is grouped into time-based "buckets" determined by the `interval`.
|
||||
- If a bucket includes many values, the first value is used.
|
||||
- If a bucket includes no values, a missing value (`null`) is added for that bucket.
|
||||
|
||||
By default, `holtWinters()` uses the first value in each time bucket to run the Holt-Winters calculation.
|
||||
To specify other values to use in the calculation, use:
|
||||
|
||||
- [`window()`](/v2.0/reference/flux/functions/built-in/transformations/window/)
|
||||
with [selectors](/v2.0/reference/flux/functions/built-in/transformations/selectors/)
|
||||
or [aggregates](/v2.0/reference/flux/functions/built-in/transformations/aggregates/)
|
||||
- [`aggregateWindow()`](/v2.0/reference/flux/functions/built-in/transformations/aggregates/aggregatewindow)
|
||||
|
||||
#### Fitted model
|
||||
The `holtWinters()` function applies the [Nelder-Mead optimization](https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method)
|
||||
to include "fitted" data points in results when [`withFit`](#withfit) is set to `true`.
|
||||
|
||||
#### Null timestamps
|
||||
`holtWinters()` discards rows with `null` timestamps before running the Holt-Winters calculation.
|
||||
|
||||
#### Null values
|
||||
`holtWinters()` treats `null` values as missing data points and includes them in the Holt-Winters calculation.
|
||||
|
||||
## Parameters
|
||||
|
||||
### n
|
||||
The number of values to predict.
|
||||
|
||||
_**Data type: Integer**_
|
||||
|
||||
### seasonality
|
||||
The number of points in a season.
|
||||
Defaults to `0`.
|
||||
|
||||
_**Data type: Integer**_
|
||||
|
||||
### interval
|
||||
The interval between two data points.
|
||||
|
||||
_**Data type: Duration**_
|
||||
|
||||
### withFit
|
||||
Return [fitted data](#fitted-model) in results.
|
||||
Defaults to `false`.
|
||||
|
||||
_**Data type: Boolean**_
|
||||
|
||||
### timeColumn
|
||||
The time column to use.
|
||||
Defaults to `"_time"`.
|
||||
|
||||
_**Data type: String**_
|
||||
|
||||
### column
|
||||
The column to operate on.
|
||||
Defaults to `"_value"`.
|
||||
|
||||
_**Data type: String**_
|
||||
|
||||
## Examples
|
||||
|
||||
##### Use aggregateWindow to prepare data for holtWinters
|
||||
```js
|
||||
from(bucket: "example-bucket")
|
||||
|> range(start: -7y)
|
||||
|> filter(fn: (r) => r._field == "water_level")
|
||||
|> aggregateWindow(every: 379m, fn: first).
|
||||
|> holtWinters(n: 10, seasonality: 4, interval: 379m)
|
||||
```
|
|
@ -10,21 +10,21 @@ weight: 501
|
|||
related:
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/timedmovingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/exponentialmovingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/doubleema/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/tripleema/
|
||||
- https://docs.influxdata.com/influxdb/latest/query_language/functions/#moving-average, InfluxQL MOVING_AVERAGE()
|
||||
---
|
||||
|
||||
The `movingAverage()` function calculates the mean of values grouped into `n` number of points.
|
||||
The `movingAverage()` function calculates the mean of values in the `_values` column
|
||||
grouped into `n` number of points.
|
||||
|
||||
_**Function type:** Aggregate_
|
||||
|
||||
```js
|
||||
movingAverage(
|
||||
n: 5,
|
||||
columns: ["_value"]
|
||||
)
|
||||
movingAverage(n: 5)
|
||||
```
|
||||
|
||||
##### Moving average rules:
|
||||
##### Moving average rules
|
||||
- The average over a period populated by `n` values is equal to their algebraic mean.
|
||||
- The average over a period populated by only `null` values is `null`.
|
||||
- Moving averages skip `null` values.
|
||||
|
@ -38,11 +38,6 @@ The number of points to average.
|
|||
|
||||
_**Data type:** Integer_
|
||||
|
||||
### columns
|
||||
Columns to operate on. _Defaults to `["_value"]`_.
|
||||
|
||||
_**Data type:** Array of Strings_
|
||||
|
||||
## Examples
|
||||
|
||||
#### Calculate a five point moving average
|
||||
|
@ -52,36 +47,23 @@ from(bucket: "example-bucket"):
|
|||
|> movingAverage(n: 5)
|
||||
```
|
||||
|
||||
#### Calculate a ten point moving average
|
||||
```js
|
||||
movingAverage = (every, period, column="_value", tables=<-) =>
|
||||
tables
|
||||
|> window(every: every, period: period)
|
||||
|> mean(column: column)
|
||||
|> duplicate(column: "_stop", as: "_time")
|
||||
|> window(every: inf)
|
||||
```
|
||||
|
||||
#### Table transformation with a two point moving average
|
||||
|
||||
###### Input table:
|
||||
| _time | A | B | C | D | tag |
|
||||
|:-----:|:----:|:----:|:----:|:----:|:---:|
|
||||
| 0001 | null | 1 | 2 | null | tv |
|
||||
| 0002 | 6 | 2 | null | null | tv |
|
||||
| 0003 | 4 | null | 4 | 4 | tv |
|
||||
| _time | tag | _value |
|
||||
|:-----:|:---:|:------:|
|
||||
| 0001 | tv | null |
|
||||
| 0002 | tv | 6 |
|
||||
| 0003 | tv | 4 |
|
||||
|
||||
###### Query:
|
||||
```js
|
||||
// ...
|
||||
|> movingAverage(
|
||||
n: 2,
|
||||
columns: ["A", "B", "C", "D"]
|
||||
)
|
||||
|> movingAverage(n: 2 )
|
||||
```
|
||||
|
||||
###### Output table:
|
||||
| _time | A | B | C | D | tag |
|
||||
|:-----:|:----:|:----:|:----:|:----:|:---:|
|
||||
| 0002 | 6 | 1.5 | 2 | null | tv |
|
||||
| 0003 | 5 | 2 | 4 | 4 | tv |
|
||||
| _time | tag | _value |
|
||||
|:-----:|:---:|:------:|
|
||||
| 0002 | tv | 6 |
|
||||
| 0003 | tv | 5 |
|
||||
|
|
|
@ -0,0 +1,103 @@
|
|||
---
|
||||
title: relativeStrengthIndex() function
|
||||
description: >
|
||||
The `relativeStrengthIndex()` function measures the relative speed and change of
|
||||
values in an input table.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: relativeStrengthIndex
|
||||
parent: built-in-aggregates
|
||||
weight: 501
|
||||
related:
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/movingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/timedmovingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/exponentialmovingaverage/
|
||||
- https://docs.influxdata.com/influxdb/v1.7/query_language/functions/#relative-strength-index, InfluxQL RELATIVE_STRENGTH_INDEX()
|
||||
---
|
||||
|
||||
The `relativeStrengthIndex()` function measures the relative speed and change of
|
||||
values in an input table.
|
||||
|
||||
_**Function type:** Aggregate_
|
||||
|
||||
```js
|
||||
relativeStrengthIndex(
|
||||
n: 5,
|
||||
columns: ["_value"]
|
||||
)
|
||||
```
|
||||
|
||||
##### Relative strength index rules
|
||||
- The general equation for calculating a relative strength index (RSI) is
|
||||
`RSI = 100 - (100 / (1 + (AVG GAIN / AVG LOSS)))`.
|
||||
- For the first value of the RSI, `AVG GAIN` and `AVG LOSS` are averages of the `n` period.
|
||||
- For subsequent calculations:
|
||||
- `AVG GAIN` = `((PREVIOUS AVG GAIN) * (n - 1)) / n`
|
||||
- `AVG LOSS` = `((PREVIOUS AVG LOSS) * (n - 1)) / n`
|
||||
- `relativeStrengthIndex()` ignores `null` values.
|
||||
|
||||
## Parameters
|
||||
|
||||
### n
|
||||
The number of values to use to calculate the RSI.
|
||||
|
||||
_**Data type:** Integer_
|
||||
|
||||
### columns
|
||||
Columns to operate on. _Defaults to `["_value"]`_.
|
||||
|
||||
_**Data type:** Array of Strings_
|
||||
|
||||
## Examples
|
||||
|
||||
#### Calculate a five point relative strength index
|
||||
```js
|
||||
from(bucket: "example-bucket"):
|
||||
|> range(start: -12h)
|
||||
|> relativeStrengthIndex(n: 5)
|
||||
```
|
||||
|
||||
#### Table transformation with a ten point RSI
|
||||
|
||||
###### Input table:
|
||||
| _time | A | B | tag |
|
||||
|:-----:|:----:|:----:|:---:|
|
||||
| 0001 | 1 | 1 | tv |
|
||||
| 0002 | 2 | 2 | tv |
|
||||
| 0003 | 3 | 3 | tv |
|
||||
| 0004 | 4 | 4 | tv |
|
||||
| 0005 | 5 | 5 | tv |
|
||||
| 0006 | 6 | 6 | tv |
|
||||
| 0007 | 7 | 7 | tv |
|
||||
| 0008 | 8 | 8 | tv |
|
||||
| 0009 | 9 | 9 | tv |
|
||||
| 0010 | 10 | 10 | tv |
|
||||
| 0011 | 11 | 11 | tv |
|
||||
| 0012 | 12 | 12 | tv |
|
||||
| 0013 | 13 | 13 | tv |
|
||||
| 0014 | 14 | 14 | tv |
|
||||
| 0015 | 15 | 15 | tv |
|
||||
| 0016 | 16 | 16 | tv |
|
||||
| 0017 | 17 | null | tv |
|
||||
| 0018 | 18 | 17 | tv |
|
||||
|
||||
###### Query:
|
||||
```js
|
||||
// ...
|
||||
|> relativeStrengthIndex(
|
||||
n: 10,
|
||||
columns: ["A", "B"]
|
||||
)
|
||||
```
|
||||
|
||||
###### Output table:
|
||||
| _time | A | B | tag |
|
||||
|:-----:|:----:|:----:|:---:|
|
||||
| 0011 | 100 | 100 | tv |
|
||||
| 0012 | 100 | 100 | tv |
|
||||
| 0013 | 100 | 100 | tv |
|
||||
| 0014 | 100 | 100 | tv |
|
||||
| 0015 | 100 | 100 | tv |
|
||||
| 0016 | 90 | 90 | tv |
|
||||
| 0017 | 81 | 90 | tv |
|
||||
| 0018 | 72.9 | 81 | tv |
|
|
@ -11,6 +11,8 @@ weight: 501
|
|||
related:
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/movingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/exponentialmovingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/doubleema/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/tripleema/
|
||||
- https://docs.influxdata.com/influxdb/latest/query_language/functions/#moving-average, InfluxQL MOVING_AVERAGE()
|
||||
---
|
||||
|
||||
|
|
|
@ -0,0 +1,68 @@
|
|||
---
|
||||
title: tripleEMA() function
|
||||
description: >
|
||||
The `tripleEMA()` function calculates the exponential moving average of values
|
||||
grouped into `n` number of points, giving more weight to recent data with less lag
|
||||
than `exponentialMovingAverage()` and `doubleEMA()`.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: tripleEMA
|
||||
parent: built-in-aggregates
|
||||
weight: 501
|
||||
related:
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/movingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/doubleema/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/timedmovingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/exponentialmovingaverage/
|
||||
- https://docs.influxdata.com/influxdb/v1.7/query_language/functions/#triple-exponential-moving-average, InfluxQL TRIPLE_EXPONENTIAL_MOVING_AVERAGE()
|
||||
---
|
||||
|
||||
The `tripleEMA()` function calculates the exponential moving average of values in
|
||||
the `_value` column grouped into `n` number of points, giving more weight to recent
|
||||
data with less lag than
|
||||
[`exponentialMovingAverage()`](/v2.0/reference/flux/functions/built-in/transformations/aggregates/exponentialmovingaverage/)
|
||||
and [`doubleEMA()`](/v2.0/reference/flux/functions/built-in/transformations/aggregates/doubleema/).
|
||||
|
||||
_**Function type:** Aggregate_
|
||||
|
||||
```js
|
||||
tripleEMA(n: 5)
|
||||
```
|
||||
|
||||
##### Triple exponential moving average rules
|
||||
- A triple exponential moving average is defined as `tripleEMA = (3 * EMA_1) - (3 * EMA_2) + EMA_3`.
|
||||
- `EMA_1` is the exponential moving average of the original data.
|
||||
- `EMA_2` is the exponential moving average of `EMA_1`.
|
||||
- `EMA_3` is the exponential moving average of `EMA_2`.
|
||||
- A true triple exponential moving average requires at least requires at least `3 * n - 2` values.
|
||||
If not enough values exist to calculate the triple EMA, it returns a `NaN` value.
|
||||
- `tripleEMA()` inherits all [exponential moving average rules](/v2.0/reference/flux/functions/built-in/transformations/aggregates/exponentialmovingaverage/#exponential-moving-average-rules).
|
||||
|
||||
## Parameters
|
||||
|
||||
### n
|
||||
The number of points to average.
|
||||
|
||||
_**Data type:** Integer_
|
||||
|
||||
## Examples
|
||||
|
||||
#### Calculate a five point triple exponential moving average
|
||||
```js
|
||||
from(bucket: "example-bucket"):
|
||||
|> range(start: -12h)
|
||||
|> tripleEMA(n: 5)
|
||||
```
|
||||
|
||||
## Function definition
|
||||
```js
|
||||
tripleEMA = (n, tables=<-) =>
|
||||
tables
|
||||
|> exponentialMovingAverage(n:n)
|
||||
|> duplicate(column:"_value", as:"ema1")
|
||||
|> exponentialMovingAverage(n:n)
|
||||
|> duplicate(column:"_value", as:"ema2")
|
||||
|> exponentialMovingAverage(n:n)
|
||||
|> map(fn: (r) => ({r with _value: 3.0 * r.ema1 - 3.0 * r.ema2 + r._value}))
|
||||
|> drop(columns: ["ema1", "ema2"])
|
||||
```
|
|
@ -0,0 +1,55 @@
|
|||
---
|
||||
title: hourSelection() function
|
||||
description: >
|
||||
The `hourSelection()` function retains all rows with time values in a specified hour range.
|
||||
Hours are specified in military time.
|
||||
aliases:
|
||||
- /v2.0/reference/flux/functions/transformations/hourSelection
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: hourSelection
|
||||
parent: built-in-transformations
|
||||
weight: 401
|
||||
---
|
||||
|
||||
The `hourSelection()` function retains all rows with time values in a specified hour range.
|
||||
|
||||
_**Function type:** Transformation_
|
||||
|
||||
```js
|
||||
hourSelection(
|
||||
start: 9,
|
||||
stop: 17,
|
||||
timeColumn: "_time"
|
||||
)
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
### start
|
||||
The first hour of the hour range (inclusive).
|
||||
Hours range from `[0-23]`.
|
||||
|
||||
_**Data type:** Integer_
|
||||
|
||||
### stop
|
||||
The last hour of the hour range (inclusive).
|
||||
Hours range from `[0-23]`.
|
||||
|
||||
_**Data type:** Integer_
|
||||
|
||||
### timeColumn
|
||||
The column that contains the time value.
|
||||
Default is `"_time"`.
|
||||
|
||||
_**Data type:** String_
|
||||
|
||||
## Examples
|
||||
|
||||
##### Use only data from 9am to 5pm
|
||||
```js
|
||||
from(bucket:"example-bucket")
|
||||
|> range(start:-90d)
|
||||
|> filter(fn: (r) => r._measurement == "foot-traffic" )
|
||||
|> hourSelection(start: 9, stop: 17)
|
||||
```
|
|
@ -1,6 +1,6 @@
|
|||
---
|
||||
title: limit() function
|
||||
description: The `limit()` function limits the number of records in output tables to a fixed number (n).
|
||||
description: The `limit()` function limits each output table to the first `n` records.
|
||||
aliases:
|
||||
- /v2.0/reference/flux/functions/transformations/limit
|
||||
menu:
|
||||
|
@ -8,18 +8,23 @@ menu:
|
|||
name: limit
|
||||
parent: built-in-transformations
|
||||
weight: 401
|
||||
related:
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/tail/
|
||||
- https://docs.influxdata.com/influxdb/latest/query_language/data_exploration/#the-limit-and-slimit-clauses, InfluxQL LIMIT
|
||||
---
|
||||
|
||||
The `limit()` function limits the number of records in output tables to a fixed number ([`n`](#n)).
|
||||
One output table is produced for each input table.
|
||||
Each output table contains the first `n` records after the first `offset` records of the input table.
|
||||
If the input table has less than `offset + n` records, all records except the first `offset` ones are output.
|
||||
The `limit()` function limits each output table to the first [`n`](#n) records.
|
||||
The function produces one output table for each input table.
|
||||
Each output table contains the first `n` records after the [`offset`](#offset).
|
||||
If the input table has less than `offset + n` records, `limit()` outputs all records after the `offset`.
|
||||
|
||||
_**Function type:** Filter_
|
||||
_**Output data type:** Object_
|
||||
_**Function type:** Filter_
|
||||
|
||||
```js
|
||||
limit(n:10, offset: 0)
|
||||
limit(
|
||||
n:10,
|
||||
offset: 0
|
||||
)
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
@ -36,13 +41,10 @@ Defaults to `0`.
|
|||
_**Data type:** Integer_
|
||||
|
||||
## Examples
|
||||
|
||||
##### Output the first ten records in each table
|
||||
```js
|
||||
from(bucket:"example-bucket")
|
||||
|> range(start:-1h)
|
||||
|> limit(n:10, offset: 1)
|
||||
|> limit(n:10)
|
||||
```
|
||||
|
||||
<hr style="margin-top:4rem"/>
|
||||
|
||||
##### Related InfluxQL functions and statements:
|
||||
[LIMIT](https://docs.influxdata.com/influxdb/latest/query_language/data_exploration/#the-limit-and-slimit-clauses)
|
||||
|
|
|
@ -0,0 +1,47 @@
|
|||
---
|
||||
title: tail() function
|
||||
description: The `tail()` function limits each output table to the last `n` records.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: tail
|
||||
parent: built-in-transformations
|
||||
weight: 401
|
||||
related:
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/limit/
|
||||
---
|
||||
|
||||
The `tail()` function limits each output table to the last [`n`](#n) records.
|
||||
The function produces one output table for each input table.
|
||||
Each output table contains the last `n` records before the [`offset`](#offset).
|
||||
If the input table has less than `offset + n` records, `tail()` outputs all records before the `offset`.
|
||||
|
||||
_**Function type:** Filter_
|
||||
|
||||
```js
|
||||
tail(
|
||||
n:10,
|
||||
offset: 0
|
||||
)
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
### n
|
||||
The maximum number of records to output.
|
||||
|
||||
_**Data type:** Integer_
|
||||
|
||||
### offset
|
||||
The number of records to skip at the end of a table table before limiting to `n`.
|
||||
Defaults to `0`.
|
||||
|
||||
_**Data type:** Integer_
|
||||
|
||||
## Examples
|
||||
|
||||
##### Output the last ten records in each table
|
||||
```js
|
||||
from(bucket:"example-bucket")
|
||||
|> range(start:-1h)
|
||||
|> tail(n:10)
|
||||
```
|
|
@ -0,0 +1,31 @@
|
|||
---
|
||||
title: date.microsecond() function
|
||||
description: >
|
||||
The `date.microsecond()` function returns the microsecond of a specified time.
|
||||
Results range from `[0-999999]`.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: date.microsecond
|
||||
parent: Date
|
||||
weight: 301
|
||||
---
|
||||
|
||||
The `date.microsecond()` function returns the microsecond of a specified time.
|
||||
Results range from `[0-999999]`.
|
||||
|
||||
_**Function type:** Transformation_
|
||||
|
||||
```js
|
||||
import "date"
|
||||
|
||||
date.microsecond(t: 2019-07-17T12:05:21.012934584Z)
|
||||
|
||||
// Returns 12934
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
### t
|
||||
The time to operate on.
|
||||
|
||||
_**Data type:** Time_
|
|
@ -0,0 +1,31 @@
|
|||
---
|
||||
title: date.millisecond() function
|
||||
description: >
|
||||
The `date.millisecond()` function returns the millisecond of a specified time.
|
||||
Results range from `[0-999999]`.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: date.millisecond
|
||||
parent: Date
|
||||
weight: 301
|
||||
---
|
||||
|
||||
The `date.millisecond()` function returns the millisecond of a specified time.
|
||||
Results range from `[0-999]`.
|
||||
|
||||
_**Function type:** Transformation_
|
||||
|
||||
```js
|
||||
import "date"
|
||||
|
||||
date.millisecond(t: 2019-07-17T12:05:21.012934584Z)
|
||||
|
||||
// Returns 12
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
### t
|
||||
The time to operate on.
|
||||
|
||||
_**Data type:** Time_
|
|
@ -0,0 +1,31 @@
|
|||
---
|
||||
title: date.nanosecond() function
|
||||
description: >
|
||||
The `date.nanosecond()` function returns the nanosecond of a specified time.
|
||||
Results range from `[0-999999999]`.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: date.nanosecond
|
||||
parent: Date
|
||||
weight: 301
|
||||
---
|
||||
|
||||
The `date.nanosecond()` function returns the nanosecond of a specified time.
|
||||
Results range from `[0-999999999]`.
|
||||
|
||||
_**Function type:** Transformation_
|
||||
|
||||
```js
|
||||
import "date"
|
||||
|
||||
date.nanosecond(t: 2019-07-17T12:05:21.012934584Z)
|
||||
|
||||
// Returns 12934584
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
### t
|
||||
The time to operate on.
|
||||
|
||||
_**Data type:** Time_
|
|
@ -0,0 +1,31 @@
|
|||
---
|
||||
title: date.quarter() function
|
||||
description: >
|
||||
The `date.quarter()` function returns the quarter of the year for a specified time.
|
||||
Results range from `[1-4]`.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: date.quarter
|
||||
parent: Date
|
||||
weight: 301
|
||||
---
|
||||
|
||||
The `date.quarter()` function returns the quarter of the year for a specified time.
|
||||
Results range from `[1-4]`.
|
||||
|
||||
_**Function type:** Transformation_
|
||||
|
||||
```js
|
||||
import "date"
|
||||
|
||||
date.quarter(t: 2019-07-17T12:05:21.012Z)
|
||||
|
||||
// Returns 3
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
### t
|
||||
The time to operate on.
|
||||
|
||||
_**Data type:** Time_
|
|
@ -0,0 +1,57 @@
|
|||
---
|
||||
title: date.truncate() function
|
||||
description: >
|
||||
The `date.truncate()` function truncates a time to a specified unit.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: date.truncate
|
||||
parent: Date
|
||||
weight: 301
|
||||
---
|
||||
|
||||
The `date.truncate()` function truncates a time to a specified unit.
|
||||
|
||||
_**Function type:** Transformation_
|
||||
|
||||
```js
|
||||
import "date"
|
||||
|
||||
date.truncate(
|
||||
t: 2019-07-17T12:05:21.012Z
|
||||
unit: 1s
|
||||
)
|
||||
|
||||
// Returns 2019-07-17T12:05:21.000000000Z
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
### t
|
||||
The time to operate on.
|
||||
|
||||
_**Data type:** Time_
|
||||
|
||||
### unit
|
||||
The unit time to truncate to.
|
||||
|
||||
_**Data type:** Duration_
|
||||
|
||||
{{% note %}}
|
||||
Only use `1` and the unit of time to specify the `unit`.
|
||||
For example: `1s`, `1m`, `1h`.
|
||||
{{% /note %}}
|
||||
|
||||
## Examples
|
||||
```js
|
||||
import "date"
|
||||
|
||||
date.truncate(t: "2019-06-03T13:59:01.000000000Z", unit: 1s)
|
||||
// Returns 2019-06-03T13:59:01.000000000Z
|
||||
|
||||
date.truncate(t: "2019-06-03T13:59:01.000000000Z", unit: 1m)
|
||||
// Returns 2019-06-03T13:59:00.000000000Z
|
||||
|
||||
date.truncate(t: "2019-06-03T13:59:01.000000000Z", unit: 1h)
|
||||
// Returns 2019-06-03T13:00:00.000000000Z
|
||||
|
||||
```
|
|
@ -0,0 +1,31 @@
|
|||
---
|
||||
title: date.week() function
|
||||
description: >
|
||||
The `date.week()` function returns the ISO week of the year for a specified time.
|
||||
Results range from `[1-53]`.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: date.week
|
||||
parent: Date
|
||||
weight: 301
|
||||
---
|
||||
|
||||
The `date.week()` function returns the ISO week of the year for a specified time.
|
||||
Results range from `[1-53]`.
|
||||
|
||||
_**Function type:** Transformation_
|
||||
|
||||
```js
|
||||
import "date"
|
||||
|
||||
date.week(t: 2019-07-17T12:05:21.012Z)
|
||||
|
||||
// Returns 29
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
### t
|
||||
The time to operate on.
|
||||
|
||||
_**Data type:** Time_
|
|
@ -0,0 +1,29 @@
|
|||
---
|
||||
title: date.year() function
|
||||
description: >
|
||||
The `date.year()` function returns the year of a specified time.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: date.year
|
||||
parent: Date
|
||||
weight: 301
|
||||
---
|
||||
|
||||
The `date.year()` function returns the year of a specified time.
|
||||
|
||||
_**Function type:** Transformation_
|
||||
|
||||
```js
|
||||
import "date"
|
||||
|
||||
date.year(t: 2019-07-17T12:05:21.012Z)
|
||||
|
||||
// Returns 2019
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
### t
|
||||
The time to operate on.
|
||||
|
||||
_**Data type:** Time_
|
|
@ -0,0 +1,22 @@
|
|||
---
|
||||
title: Flux runtime package
|
||||
list_title: Runtime package
|
||||
description: >
|
||||
The Flux runtime package includes functions that provide information about the
|
||||
current Flux runtime. Import the `runtime` package.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: Runtime
|
||||
parent: Flux packages and functions
|
||||
weight: 202
|
||||
v2.0/tags: [runtime, functions, package]
|
||||
---
|
||||
|
||||
The Flux runtime package includes functions that provide information about the
|
||||
current Flux runtime. Import the `runtime` package:
|
||||
|
||||
```js
|
||||
import "runtime"
|
||||
```
|
||||
|
||||
{{< children type="functions" show="pages" >}}
|
|
@ -0,0 +1,20 @@
|
|||
---
|
||||
title: runtime.version() function
|
||||
description: The `runtime.version()` function returns the current Flux version.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: runtime.version
|
||||
parent: Runtime
|
||||
weight: 401
|
||||
---
|
||||
|
||||
The `runtime.version()` function returns the current Flux version.
|
||||
|
||||
_**Function type:** Miscellaneous_
|
||||
_**Output data type:** String_
|
||||
|
||||
```js
|
||||
import "runtime"
|
||||
|
||||
runtime.version()
|
||||
```
|
|
@ -11,13 +11,61 @@ aliases:
|
|||
---
|
||||
|
||||
{{% note %}}
|
||||
_The latest release of InfluxDB v2.0 alpha includes **Flux v0.37.2**.
|
||||
_The latest release of InfluxDB v2.0 alpha includes **Flux v0.39.0**.
|
||||
Though newer versions of Flux may be available, they will not be included with
|
||||
InfluxDB until the next InfluxDB v2.0 release._
|
||||
{{% /note %}}
|
||||
|
||||
---
|
||||
|
||||
## v0.39.0 [2019-08-13]
|
||||
|
||||
### Breaking changes
|
||||
- Implement the scanning components for string expressions.
|
||||
|
||||
### Features
|
||||
- Add `tail()` function.
|
||||
- Add framework for `http.post()` function.
|
||||
- Implement `deadman()` function.
|
||||
- Time arithmetic functions.
|
||||
- Alerts package.
|
||||
- Add an experimental `group()` function with mode `extend`.
|
||||
- Implement the scanning components for string expressions.
|
||||
- Add `chandeMomentumOscillator()` function.
|
||||
- Add `hourSelection()` function.
|
||||
- Add `date.year()` function
|
||||
|
||||
### Bug fixes
|
||||
- Update object to use Invalid type instead of nil monotypes.
|
||||
- Make it so the alerts package can be defined in pure Flux.
|
||||
- Close connection after `sql.to()`.
|
||||
|
||||
---
|
||||
|
||||
## v0.38.0 [2019-08-06]
|
||||
|
||||
### Features
|
||||
- Update selectors to operate on time columns.
|
||||
- Add `relativeStrengthIndex()` transformation.
|
||||
- Add double and triple exponential average transformations (`doubleEMA()` and `tripleEMA()`).
|
||||
- Add `holtWinters()` transformation.
|
||||
- Add `keepFirst` parameter to `difference()`.
|
||||
- DatePart equivalent functions.
|
||||
- Add runtime package.
|
||||
- Add and subtract duration literal arithmetic.
|
||||
- Allow `keep()` to run regardless of nonexistent columns.
|
||||
If all columns given are nonexistent, `keep()` returns an empty table.
|
||||
- Scanner returns positioning.
|
||||
|
||||
### Bug fixes
|
||||
- Function resolver now keeps track of local assignments that may be evaluated at runtime.
|
||||
- Fixed InfluxDB test errors.
|
||||
- Add range to tests to pass in InfluxDB.
|
||||
- Allow converting a duration to a duration.
|
||||
- Catch integer overflow and underflow for literals.
|
||||
|
||||
---
|
||||
|
||||
## v0.37.2 [2019-07-24]
|
||||
|
||||
- _General cleanup of internal code._
|
||||
|
|
|
@ -8,6 +8,21 @@ menu:
|
|||
weight: 101
|
||||
---
|
||||
|
||||
## v2.0.0-alpha.17 [2019-08-14]
|
||||
|
||||
### Features
|
||||
- Optional gzip compression of the query CSV response.
|
||||
- Add task types.
|
||||
- When getting task runs from the API, runs will be returned in order of most recently scheduled first.
|
||||
|
||||
### Bug Fixes
|
||||
- Fix authentication when updating a task with invalid org or bucket.
|
||||
- Update the documentation link for Telegraf.
|
||||
- Fix to surface errors properly as task notifications on create.
|
||||
- Fix limiting of get runs for task.
|
||||
|
||||
---
|
||||
|
||||
## v2.0.0-alpha.16 [2019-07-25]
|
||||
|
||||
### Bug Fixes
|
||||
|
|
Loading…
Reference in New Issue