added flux function docs

pull/22/head
Scott Anderson 2019-01-21 22:31:27 -07:00
parent 8e254a3b43
commit 8025dd561e
91 changed files with 4918 additions and 19 deletions

View File

@ -51,7 +51,7 @@ are unique to each row.
## Tools for working with Flux
You have multiple [options for writing and running Flux queries](/flux/v0.12/guides/executing-queries),
You have multiple [options for writing and running Flux queries](/v2.0/reference/flux/guides/executing-queries),
but as you're getting started, we recommend using the following:
### 1. Data Explorer

View File

@ -17,8 +17,8 @@ Every Flux query needs the following:
## 1. Define your data source
Flux's [`from()`](#) function defines an InfluxDB data source.
It requires a [`bucket`](#) parameter.
Flux's [`from()`](/v2.0/reference/flux/functions/inputs/from) function defines an InfluxDB data source.
It requires a [`bucket`](/v2.0/reference/flux/functions/inputs/from#bucket) parameter.
The following examples use `example-bucket` as the bucket name.
```js
@ -30,11 +30,11 @@ Flux requires a time range when querying time series data.
"Unbounded" queries are very resource-intensive and as a protective measure,
Flux will not query the database without a specified range.
Use the pipe-forward operator (`|>`) to pipe data from your data source into the [`range()`](/flux/v0.12/functions/transformations/range)
Use the pipe-forward operator (`|>`) to pipe data from your data source into the [`range()`](/v2.0/reference/flux/functions/transformations/range)
function, which specifies a time range for your query.
It accepts two properties: `start` and `stop`.
Ranges can be **relative** using negative [durations](/flux/v0.12/language/lexical-elements#duration-literals)
or **absolute** using [timestamps](/flux/v0.12/language/lexical-elements#date-and-time-literals).
Ranges can be **relative** using negative [durations](/v2.0/reference/flux/language/lexical-elements#duration-literals)
or **absolute** using [timestamps](/v2.0/reference/flux/language/lexical-elements#date-and-time-literals).
###### Example relative time ranges
```js

View File

@ -183,7 +183,7 @@ topN = (tables=<-, n) => tables |> sort(desc: true) |> limit(n: n)
{{% /code-tab-content %}}
{{< /code-tabs-wrapper >}}
_More information about creating custom functions is available in the [Custom functions](/flux/v0.12/functions/custom-functions) documentation._
_More information about creating custom functions is available in the [Custom functions](/v2.0/reference/flux/functions/custom-functions) documentation._
Using the `cpuUsageUser` data stream variable defined above, find the top five data
points with the custom `topN` function and yield the results.

View File

@ -12,7 +12,7 @@ When [querying data from InfluxDB](/v2.0/query-data/flux/get-started/query-influ
you often need to transform that data in some way.
Common examples are aggregating data into averages, downsampling data, etc.
This guide demonstrates using [Flux functions](/flux/v0.12/functions) to transform your data.
This guide demonstrates using [Flux functions](/v2.0/reference/flux/functions) to transform your data.
It walks through creating a Flux script that partitions data into windows of time,
averages the `_value`s in each window, and outputs the averages as a new table.
@ -34,14 +34,14 @@ from(bucket:"example-bucket")
## Flux functions
Flux provides a number of functions that perform specific operations, transformations, and tasks.
You can also [create custom functions](/flux/v0.12/functions/custom-functions) in your Flux queries.
_Functions are covered in detail in the [Flux functions](/flux/v0.12/functions) documentation._
You can also [create custom functions](/v2.0/reference/flux/functions/custom-functions) in your Flux queries.
_Functions are covered in detail in the [Flux functions](/v2.0/reference/flux/functions) documentation._
A common type of function used when transforming data queried from InfluxDB is an aggregate function.
Aggregate functions take a set of `_value`s in a table, aggregate them, and transform
them into a new value.
This example uses the [`mean()` function](/flux/v0.12/functions/transformations/aggregates/mean)
This example uses the [`mean()` function](/v2.0/reference/flux/functions/transformations/aggregates/mean)
to average values within each time window.
{{% note %}}
@ -51,7 +51,7 @@ It's just good to understand the steps in the process.
{{% /note %}}
## Window your data
Flux's [`window()` function](/flux/v0.12/functions/transformations/window) partitions records based on a time value.
Flux's [`window()` function](/v2.0/reference/flux/functions/transformations/window) partitions records based on a time value.
Use the `every` parameter to define a duration of each window.
For this example, window data in five minute intervals (`5m`).
@ -74,7 +74,7 @@ When visualized, each table is assigned a unique color.
## Aggregate windowed data
Flux aggregate functions take the `_value`s in each table and aggregate them in some way.
Use the [`mean()` function](/flux/v0.12/functions/transformations/aggregates/mean) to average the `_value`s of each table.
Use the [`mean()` function](/v2.0/reference/flux/functions/transformations/aggregates/mean) to average the `_value`s of each table.
```js
from(bucket:"example-bucket")
@ -100,7 +100,7 @@ Aggregate functions don't infer what time should be used for the aggregate value
Therefore the `_time` column is dropped.
A `_time` column is required in the [next operation](#unwindow-aggregate-tables).
To add one, use the [`duplicate()` function](/flux/v0.12/functions/transformations/duplicate)
To add one, use the [`duplicate()` function](/v2.0/reference/flux/functions/transformations/duplicate)
to duplicate the `_stop` column as the `_time` column for each windowed table.
```js
@ -145,7 +145,7 @@ process helps to understand how data changes "shape" as it is passed through eac
Flux provides (and allows you to create) "helper" functions that abstract many of these steps.
The same operation performed in this guide can be accomplished using the
[`aggregateWindow()` function](/flux/v0.12/functions/transformations/aggregates/aggregatewindow).
[`aggregateWindow()` function](/v2.0/reference/flux/functions/transformations/aggregates/aggregatewindow).
```js
from(bucket:"example-bucket")
@ -166,7 +166,7 @@ and your own custom functions, but this is a good introduction into the basic sy
---
_For a deeper dive into windowing and aggregating data with example data output for each transformation,
view the [Windowing and aggregating data](/flux/v0.12/guides/windowing-aggregating) guide._
view the [Windowing and aggregating data](/v2.0/reference/flux/guides/windowing-aggregating) guide._
---

View File

@ -0,0 +1,29 @@
---
title: Flux functions
description: Flux functions allows you to retrieve, transform, process, and output data easily.
menu:
v2_0_ref:
name: Flux functions
parent: Flux query language
weight: 4
---
Flux's functional syntax allows you to retrieve, transform, process, and output data easily.
There is a large library of built-in functions, but you can also create your own
custom functions to perform operations that suit your needs.
## [Input functions](/v2.0/reference/flux/functions/inputs)
Input functions define or display information about data sources.
## [Output functions](/v2.0/reference/flux/functions/outputs)
Output functions yield results or send data to a specified output.
## [Transformation functions](/v2.0/reference/flux/functions/transformations)
Transformation functions transform or shape your data in specific ways.
## [Miscellaneous functions](/v2.0/reference/flux/functions/misc)
Functions that serve miscellaneous purposes when writing Flux scripts.
## [Custom functions](/v2.0/reference/flux/functions/custom-functions)
Flux's functional syntax allows for custom functions.
This guide walks through the basics of creating your own function.

View File

@ -0,0 +1,133 @@
---
title: Create custom Flux functions
description: Create your own custom Flux functions to transform and manipulate data.
menu:
v2_0_ref:
name: Custom functions
parent: Flux functions
weight: 6
---
Flux's functional syntax allows for custom functions.
This guide walks through the basics of creating your own function.
## Function definition structure
The basic structure for defining functions in Flux is as follows:
```js
// Basic function definition structure
functionName = (functionParameters) => functionOperations
```
##### `functionName`
The name used to call the function in your Flux script.
##### `functionParameters`
A comma-separated list of parameters passed into the function and used in its operations.
[Parameter defaults](#define-parameter-defaults) can be defined for each.
##### `functionOperations`
Operations and functions that manipulate the input into the desired output.
#### Basic function examples
###### Example square function
```js
// Function definition
square = (n) => n * n
// Function usage
> square(n:3)
9
```
###### Example multiply function
```js
// Function definition
multiply = (x, y) => x * y
// Function usage
> multiply(x:2, y:15)
30
```
## Functions that manipulate pipe-forwarded data
Most Flux functions manipulate data pipe-forwarded into the function.
In order for a custom function to process pipe-forwarded data, one of the function
parameters must capture the input tables using the `<-` pipe-receive expression.
In the example below, the `tables` parameter is assigned to the `<-` expression,
which represents all data pipe-forwarded into the function.
`tables` is then pipe-forwarded into other operations in the function definition.
```js
functionName = (tables=<-) => tables |> functionOperations
```
#### Pipe-forwardable function example
###### Multiply row values by x
The example below defines a `multByX` function that multiplies the `_value` column
of each row in the input table by the `x` parameter.
It uses the [`map()` function](/v2.0/reference/flux/functions/transformations/map) to modify each `_value`.
```js
// Function definition
multByX = (tables=<-, x) =>
tables
|> map(fn: (r) => r._value * x)
// Function usage
from(bucket: "telegraf/autogen")
|> range(start: -1m)
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used_percent"
)
|> multByX(x:2.0)
```
## Define parameter defaults
To define parameters with default values, use the `=` assignment operator to assign
a default in your function definition:
```js
functionName = (param1=defaultValue1, param2=defaultValue2) => functionOperation
```
Defaults are overridden by explicitly defining the parameter in the function call.
#### Example functions with defaults
###### Get the winner or the "winner"
The example below defines a `getWinner` function that returns the record with the highest
or lowest `_value` (winner versus "winner") depending on the `noSarcasm` parameter which defaults to `true`.
It uses the [`sort()` function](/v2.0/reference/flux/functions/transformations/sort) to sort records in either descending or ascending order.
It then uses the [`limit()` function](/v2.0/reference/flux/functions/transformations/limit) to return the first record from the sorted table.
```js
// Function definition
getWinner = (tables=<-, noSarcasm:true) =>
tables
|> sort(desc: noSarcasm)
|> limit(n:1)
// Function usage
// Get the winner
from(bucket: "telegraf/autogen")
|> range(start: -1m)
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used_percent"
)
|> getWinner()
// Get the "winner"
from(bucket: "telegraf/autogen")
|> range(start: -1m)
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used_percent"
)
|> getWinner(noSarcasm: false)
```

View File

@ -0,0 +1,14 @@
---
title: Flux input functions
description: Flux input functions define sources of data or or display information about data sources.
menu:
v2_0_ref:
parent: Flux functions
name: Inputs
weight: 1
---
Flux input functions define sources of data or display information about data sources.
The following input functions are available:
{{< function-list category="Inputs" menu="v2_0_ref" >}}

View File

@ -0,0 +1,22 @@
---
title: buckets() function
description: The buckets() function returns a list of buckets in the organization.
menu:
v2_0_ref:
name: buckets
parent: Inputs
weight: 1
---
The `buckets()` function returns a list of buckets in the organization.
_**Function type:** Input_
```js
buckets()
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[SHOW DATABASES](https://docs.influxdata.com/influxdb/latest/query_language/schema_exploration/#show-databases)

View File

@ -0,0 +1,50 @@
---
title: from() function
description: The from() function retrieves data from an InfluxDB data source.
menu:
v2_0_ref:
name: from
parent: Inputs
weight: 1
---
The `from()` function retrieves data from an InfluxDB data source.
It returns a stream of tables from the specified [bucket](#parameters).
Each unique series is contained within its own table.
Each record in the table represents a single point in the series.
_**Function type:** Input_
_**Output data type:** Object_
```js
from(bucket: "telegraf/autogen")
// OR
from(bucketID: "0261d8287f4d6000")
```
## Parameters
### bucket
The name of the bucket to query.
_**Data type:** String_
### bucketID
The string-encoded ID of the bucket to query.
_**Data type:** String_
## Examples
```js
from(bucket: "telegraf/autogen")
```
```js
from(bucketID: "0261d8287f4d6000")
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[FROM](https://docs.influxdata.com/influxdb/latest/query_language/data_exploration/#from-clause)

View File

@ -0,0 +1,64 @@
---
title: fromCSV() function
description: The fromCSV() function retrieves data from a CSV data source.
menu:
v2_0_ref:
name: fromCSV
parent: Inputs
weight: 1
---
The `fromCSV()` function retrieves data from a comma-separated value (CSV) data source.
It returns a stream of tables.
Each unique series is contained within its own table.
Each record in the table represents a single point in the series.
_**Function type:** Input_
_**Output data type:** Object_
```js
from(file: "/path/to/data-file.csv")
// OR
from(csv: csvData)
```
## Parameters
### file
The file path of the CSV file to query.
The path can be absolute or relative.
If relative, it is relative to the working directory of the `influxd` process.
_**Data type:** String_
### csv
Raw CSV-formatted text.
{{% note %}}
CSV data must be in the CSV format produced by the Flux HTTP response standard.
See the [Flux technical specification](https://github.com/influxdata/flux/blob/master/docs/SPEC.md#csv)
for information about this format.
{{% /note %}}
_**Data type:** String_
## Examples
### Query CSV data from a file
```js
from(file: "/path/to/data-file.csv")
```
### Query raw CSV-formatted text
```js
csvData = "
result,table,_start,_stop,_time,region,host,_value
mean,0,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:00Z,east,A,15.43
mean,0,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:20Z,east,B,59.25
mean,0,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:40Z,east,C,52.62
"
from(csv: csvData)
```

View File

@ -0,0 +1,15 @@
---
title: Flux miscellaneous functions
description: Flux provides miscellaneous functions that serve purposes other than retrieving, transforming, or outputting data.
menu:
v2_0_ref:
parent: Flux functions
name: Miscellaneous
weight: 5
---
Flux functions primarily retrieve, shape and transform, then output data, however
there are functions available that serve other purposes.
The following functions are are available but don't fit within other function categories:
{{< function-list category="Miscellaneous" menu="v2_0_ref" >}}

View File

@ -0,0 +1,154 @@
---
title: intervals() function
description: The intervals() function generates a set of time intervals over a range of time.
menu:
v2_0_ref:
name: intervals
parent: Miscellaneous
weight: 1
---
The `intervals()` function generates a set of time intervals over a range of time.
An interval is an object with `start` and `stop` properties that correspond to the inclusive start and exclusive stop times of the time interval.
The return value of intervals is another function that accepts start and stop time parameters and returns an interval generator.
The generator is then used to produce the set of intervals.
The set of intervals includes all intervals that intersect with the initial range of time.
{{% note %}}
The `intervals()` function is designed to be used with the intervals parameter of the [`window()` function](/v2.0/reference/flux/functions/transformations/window).
{{% /note %}}
_**Function type:** Miscellaneous_
_**Output data type:** Object_
```js
intervals()
```
## Parameters
### every
The duration between starts of each of the intervals.
The Nth interval start time is the initial start time plus the offset plus an Nth multiple of the every parameter.
Defaults to the value of the `period` duration.
_**Data type:** Duration_
### period
The length of each interval.
Each interval's stop time is equal to the interval start time plus the period duration.
It can be negative, indicating the start and stop boundaries are reversed.
Defaults to the value of the `every` duration.
_**Data type:** Duration_
### offset
The offset duration relative to the location offset.
It can be negative, indicating that the offset goes backwards in time.
Defaults to `0h`.
_**Data type:** Duration_
### filter
A function that accepts an interval object and returns a boolean value.
Each potential interval is passed to the filter function.
When the function returns false, that interval is excluded from the set of intervals.
Defaults to include all intervals.
_**Data type:** Function_
## Examples
##### Basic intervals
```js
// 1 hour intervals
intervals(every:1h)
// 2 hour long intervals every 1 hour
intervals(every:1h, period:2h)
// 2 hour long intervals every 1 hour starting at 30m past the hour
intervals(every:1h, period:2h, offset:30m)
// 1 week intervals starting on Monday (by default weeks start on Sunday)
intervals(every:1w, offset:1d)
// the hour from 11PM - 12AM every night
intervals(every:1d, period:-1h)
// the last day of each month
intervals(every:1mo, period:-1d)
```
##### Using a predicate
```js
// 1 day intervals excluding weekends
intervals(
every:1d,
filter: (interval) => !(weekday(time: interval.start) in [Sunday, Saturday]),
)
// Work hours from 9AM - 5PM on work days.
intervals(
every:1d,
period:8h,
offset:9h,
filter:(interval) => !(weekday(time: interval.start) in [Sunday, Saturday]),
)
```
##### Using known start and stop dates
```js
// Every hour for six hours on Sep 5th.
intervals(every:1h)(start:2018-09-05T00:00:00-07:00, stop: 2018-09-05T06:00:00-07:00)
// Generates
// [2018-09-05T00:00:00-07:00, 2018-09-05T01:00:00-07:00)
// [2018-09-05T01:00:00-07:00, 2018-09-05T02:00:00-07:00)
// [2018-09-05T02:00:00-07:00, 2018-09-05T03:00:00-07:00)
// [2018-09-05T03:00:00-07:00, 2018-09-05T04:00:00-07:00)
// [2018-09-05T04:00:00-07:00, 2018-09-05T05:00:00-07:00)
// [2018-09-05T05:00:00-07:00, 2018-09-05T06:00:00-07:00)
// Every hour for six hours with 1h30m periods on Sep 5th
intervals(every:1h, period:1h30m)(start:2018-09-05T00:00:00-07:00, stop: 2018-09-05T06:00:00-07:00)
// Generates
// [2018-09-05T00:00:00-07:00, 2018-09-05T01:30:00-07:00)
// [2018-09-05T01:00:00-07:00, 2018-09-05T02:30:00-07:00)
// [2018-09-05T02:00:00-07:00, 2018-09-05T03:30:00-07:00)
// [2018-09-05T03:00:00-07:00, 2018-09-05T04:30:00-07:00)
// [2018-09-05T04:00:00-07:00, 2018-09-05T05:30:00-07:00)
// [2018-09-05T05:00:00-07:00, 2018-09-05T06:30:00-07:00)
// Every hour for six hours using the previous hour on Sep 5th
intervals(every:1h, period:-1h)(start:2018-09-05T12:00:00-07:00, stop: 2018-09-05T18:00:00-07:00)
// Generates
// [2018-09-05T11:00:00-07:00, 2018-09-05T12:00:00-07:00)
// [2018-09-05T12:00:00-07:00, 2018-09-05T13:00:00-07:00)
// [2018-09-05T13:00:00-07:00, 2018-09-05T14:00:00-07:00)
// [2018-09-05T14:00:00-07:00, 2018-09-05T15:00:00-07:00)
// [2018-09-05T15:00:00-07:00, 2018-09-05T16:00:00-07:00)
// [2018-09-05T16:00:00-07:00, 2018-09-05T17:00:00-07:00)
// [2018-09-05T17:00:00-07:00, 2018-09-05T18:00:00-07:00)
// Every month for 4 months starting on Jan 1st
intervals(every:1mo)(start:2018-01-01, stop: 2018-05-01)
// Generates
// [2018-01-01, 2018-02-01)
// [2018-02-01, 2018-03-01)
// [2018-03-01, 2018-04-01)
// [2018-04-01, 2018-05-01)
// Every month for 4 months starting on Jan 15th
intervals(every:1mo)(start:2018-01-15, stop: 2018-05-15)
// Generates
// [2018-01-15, 2018-02-15)
// [2018-02-15, 2018-03-15)
// [2018-03-15, 2018-04-15)
// [2018-04-15, 2018-05-15)
```

View File

@ -0,0 +1,51 @@
---
title: linearBins() function
description: The linearBins() function generates a list of linearly separated floats.
menu:
v2_0_ref:
name: linearBins
parent: Miscellaneous
weight: 1
---
The `linearBins()` function generates a list of linearly separated floats.
It is a helper function meant to generate bin bounds for the
[`histogram()` function](/v2.0/reference/flux/functions/transformations/histogram).
_**Function type:** Miscellaneous_
_**Output data type:** Array of floats_
```js
linearBins(start: 0.0, width: 5.0, count: 20, infinity: true)
```
## Parameters
### start
The first value in the returned list.
_**Data type:** Float_
### width
The distance between subsequent bin values.
_**Data type:** Float_
### count
The number of bins to create.
_**Data type:** Integer_
### infinity
When `true`, adds an additional bin with a value of positive infinity.
Defaults to `true`.
_**Data type:** Boolean_
## Examples
```js
linearBins(start: 0.0, width: 10.0, count: 10)
// Generated list: [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, +Inf]
```

View File

@ -0,0 +1,50 @@
---
title: logarithmicBins() function
description: The logarithmicBins() function generates a list of exponentially separated floats.
menu:
v2_0_ref:
name: logarithmicBins
parent: Miscellaneous
weight: 1
---
The `logarithmicBins()` function generates a list of exponentially separated floats.
It is a helper function meant to generate bin bounds for the
[`histogram()` function](/v2.0/reference/flux/functions/transformations/histogram).
_**Function type:** Miscellaneous_
_**Output data type:** Array of floats_
```js
logarithmicBins(start:1.0, factor: 2.0, count: 10, infinity: true)
```
## Parameters
### start
The first value in the returned bin list.
_**Data type:** Float_
### factor
The multiplier applied to each subsequent bin.
_**Data type:** Float_
### count
The number of bins to create.
_**Data type:** Integer_
### infinity
When `true`, adds an additional bin with a value of positive infinity.
Defaults to `true`.
_**Data type:** Boolean_
## Examples
```js
logarithmicBins(start: 1.0, factor: 2.0, count: 10, infinty: true)
// Generated list: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, +Inf]
```

View File

@ -0,0 +1,23 @@
---
title: systemTime() function
description: The systemTime() function returns the current system time.
menu:
v2_0_ref:
name: systemTime
parent: Miscellaneous
weight: 1
---
The `systemTime()` function returns the current system time.
_**Function type:** Date/Time_
_**Output data type:** Timestamp_
```js
systemTime()
```
## Examples
```js
offsetTime = (offset) => systemTime() |> shift(shift: offset)
```

View File

@ -0,0 +1,14 @@
---
title: Flux output functions
description: Flux output functions yield results or send data to a specified output destination.
menu:
v2_0_ref:
parent: Flux functions
name: Outputs
weight: 2
---
Flux output functions yield results or send data to a specified output destination.
The following output functions are are available:
{{< function-list category="Outputs" menu="v2_0_ref" >}}

View File

@ -0,0 +1,158 @@
---
title: to() function
description: The to() function writes data to an InfluxDB v2.0 bucket.
menu:
v2_0_ref:
name: to
parent: Outputs
weight: 1
---
The `to()` function writes data to an **InfluxDB v2.0** bucket.
_**Function type:** Output_
_**Output data type:** Object_
```js
to(
bucket: "my-bucket",
org: "my-org",
host: "http://example.com:8086",
token: "xxxxxx",
timeColumn: "_time",
tagColumns: ["tag1", "tag2", "tag3"],
fieldFn: (r) => ({ [r._field]: r._value })
)
// OR
to(
bucketID: "1234567890",
orgID: "0987654321",
host: "http://example.com:8086",
token: "xxxxxx",
timeColumn: "_time",
tagColumns: ["tag1", "tag2", "tag3"],
fieldFn: (r) => ({ [r._field]: r._value })
)
```
## Parameters
{{% note %}}
`bucket` OR `bucketID` is **required**.
{{% /note %}}
### bucket
The bucket to which data is written. Mutually exclusive with `bucketID`.
_**Data type:** String_
### bucketID
The ID of the bucket to which data is written. Mutually exclusive with `bucket`.
_**Data type:** String_
### org
The organization name of the specified [`bucket`](#bucket).
Only required when writing to a remote host.
Mutually exclusive with `orgID`
_**Data type:** String_
{{% note %}}
Specify either an `org` or an `orgID`, but not both.
{{% /note %}}
### orgID
The organization ID of the specified [`bucket`](#bucket).
Only required when writing to a remote host.
Mutually exclusive with `org`.
_**Data type:** String_
### host
The remote InfluxDB host to which to write.
_If specified, a `token` is required._
_**Data type:** String_
### token
The authorization token to use when writing to a remote host.
_Required when a `host` is specified._
_**Data type:** String_
### timeColumn
The time column of the output.
Default is `"_time"`.
_**Data type:** String_
### tagColumns
The tag columns of the output.
Defaults to all columns with type `string`, excluding all value columns and the `_field` column if present.
_**Data type:** Array of strings_
### fieldFn
Function that takes a record from the input table and returns an object.
For each record from the input table, `fieldFn` returns an object that maps output the field key to the output value.
Default is `(r) => ({ [r._field]: r._value })`
_**Data type:** Function_
_**Output data type:** Object_
## Examples
### Default to() operation
Given the following table:
| _time | _start | _stop | _measurement | _field | _value |
| ----- | ------ | ----- | ------------ | ------ | ------ |
| 0005 | 0000 | 0009 | "a" | "temp" | 100.1 |
| 0006 | 0000 | 0009 | "a" | "temp" | 99.3 |
| 0007 | 0000 | 0009 | "a" | "temp" | 99.9 |
The default `to` operation:
```js
// ...
|> to(bucket:"my-bucket", org:"my-org")
```
is equivalent to writing the above data using the following line protocol:
```
_measurement=a temp=100.1 0005
_measurement=a temp=99.3 0006
_measurement=a temp=99.9 0007
```
### Custom to() operation
The `to()` functions default operation can be overridden. For example, given the following table:
| _time | _start | _stop | tag1 | tag2 | hum | temp |
| ----- | ------ | ----- | ---- | ---- | ---- | ----- |
| 0005 | 0000 | 0009 | "a" | "b" | 55.3 | 100.1 |
| 0006 | 0000 | 0009 | "a" | "b" | 55.4 | 99.3 |
| 0007 | 0000 | 0009 | "a" | "b" | 55.5 | 99.9 |
The operation:
```js
// ...
|> to(bucket:"my-bucket", org:"my-org", tagColumns:["tag1"], fieldFn: (r) => return {"hum": r.hum, "temp": r.temp})
```
is equivalent to writing the above data using the following line protocol:
```
_tag1=a hum=55.3,temp=100.1 0005
_tag1=a hum=55.4,temp=99.3 0006
_tag1=a hum=55.5,temp=99.9 0007
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[SELECT INTO](https://docs.influxdata.com/influxdb/latest/query_language/data_exploration/#the-into-clause)

View File

@ -0,0 +1,45 @@
---
title: yield() function
description: The yield() function indicates the input tables received should be delivered as a result of the query.
menu:
v2_0_ref:
name: yield
parent: Outputs
weight: 1
---
The `yield()` function indicates the input tables received should be delivered as a result of the query.
Yield outputs the input stream unmodified.
A query may have multiple results, each identified by the name provided to the `yield()` function.
_**Function type:** Output_
_**Output data type:** Object_
```js
yield(name: "custom-name")
```
{{% note %}}
`yield()` is implicit for queries that do only one thing and are only needed when using multiple sources in a query.
With multiple sources, `yield()` is required to specify what is returned, and what name to give it.
{{% /note %}}
## Parameters
### name
A unique name for the yielded results.
Defaults to `"_results"`.
_**Data type:** String_
## Examples
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> yield(name: "1")
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[SELECT AS](https://docs.influxdata.com/influxdb/latest/query_language/data_exploration/#the-basic-select-statement)

View File

@ -0,0 +1,14 @@
---
title: Flux testing functions
description: Flux testing functions test piped-forward data in specific ways and return errors if the tests fail.
menu:
v2_0_ref:
name: Tests
parent: Flux functions
weight: 5
---
Flux testing functions test piped-forward data in specific ways and return errors if the tests fail.
The following testing functions are available:
{{< function-list category="Tests" menu="v2_0_ref" >}}

View File

@ -0,0 +1,67 @@
---
title: assertEquals() function
description: The assertEquals() function tests whether two streams have identical data.
menu:
v2_0_ref:
name: assertEquals
parent: Tests
weight: 1
---
The `assertEquals()` function tests whether two streams have identical data.
If equal, the function outputs the tested data stream unchanged.
If unequal, the function outputs an error.
_**Function type:** Test_
```js
assertEquals(
name: "streamEquality",
got: got,
want: want
)
```
_The `assertEquals()` function can be used to perform in-line tests in a query._
## Parameters
## name
Unique name given to the assertion.
_**Data type:** String_
## got
The stream containing data to test.
Defaults to data piped-forward from another function (`<-`).
_**Data type:** Object_
## want
The stream that contains the expected data to test against.
_**Data type:** Object_
## Examples
##### Assert of separate streams
```js
want = from(bucket: "backup-telegraf/autogen")
|> range(start: -5m)
got = from(bucket: "telegraf/autogen")
|> range(start: -5m)
assertEquals(got: got, want: want)
```
##### Inline assertion
```js
want = from(bucket: "backup-telegraf/autogen")
|> range(start: -5m)
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> assertEquals(want: want)
```

View File

@ -0,0 +1,27 @@
---
title: Flux transformation functions
description: Flux transformation functions transform and shape your data in specific ways.
menu:
v2_0_ref:
parent: Flux functions
name: Transformations
weight: 3
---
Flux transformation functions transform or shape your data in specific ways.
There are different types of transformations categorized below:
## [Aggregates](/v2.0/reference/flux/functions/transformations/aggregates)
Aggregate functions take values from an input table and aggregate them in some way.
The output table contains is a single row with the aggregated value.
## [Selectors](/v2.0/reference/flux/functions/transformations/selectors)
Selector functions return one or more records based on function logic.
The output table is different than the input table, but individual row values are not.
## [Type conversions](/v2.0/reference/flux/functions/transformations/type-conversions)
Type conversion functions convert the `_value` column of the input table into a specific data type.
## Generic transformations
{{< function-list category="Transformations" menu="v2_0_ref" >}}

View File

@ -0,0 +1,47 @@
---
title: Flux aggregate functions
description: Flux aggregate functions take values from an input table and aggregate them in some way.
menu:
v2_0_ref:
parent: Transformations
name: Aggregates
weight: 1
---
Flux aggregate functions take values from an input table and aggregate them in some way.
The output table contains is a single row with the aggregated value.
Aggregate operations output a table for every input table they receive.
A list of columns to aggregate must be provided to the operation.
The aggregate function is applied to each column in isolation.
Any output table will have the following properties:
- It always contains a single record.
- It will have the same group key as the input table.
- It will contain a column for each provided aggregate column.
The column label will be the same as the input table.
The type of the column depends on the specific aggregate operation.
The value of the column will be `null` if the input table is empty or the input column has only `null` values.
- It will not have a `_time` column.
### aggregateWindow helper function
The [`aggregateWindow()` function](/v2.0/reference/flux/functions/transformations/aggregates/aggregatewindow)
does most of the work needed when aggregating data.
It windows and aggregates the data, then combines windowed tables into a single output table.
### Aggregate functions
The following aggregate functions are available:
{{< function-list category="Aggregates" menu="v2_0_ref" >}}
### Aggregate selectors
The following functions are both aggregates and selectors.
Each returns `n` values after performing an aggregate operation.
They are categorized as selector functions in this documentation:
- [highestAverage](/v2.0/reference/flux/functions/transformations/selectors/highestaverage)
- [highestCurrent](/v2.0/reference/flux/functions/transformations/selectors/highestcurrent)
- [highestMax](/v2.0/reference/flux/functions/transformations/selectors/highestmax)
- [lowestAverage](/v2.0/reference/flux/functions/transformations/selectors/lowestaverage)
- [lowestCurrent](/v2.0/reference/flux/functions/transformations/selectors/lowestcurrent)
- [lowestMin](/v2.0/reference/flux/functions/transformations/selectors/lowestmin)

View File

@ -0,0 +1,112 @@
---
title: aggregateWindow() function
description: The aggregateWindow() function applies an aggregate function to fixed windows of time.
menu:
v2_0_ref:
name: aggregateWindow
parent: Aggregates
weight: 1
---
The `aggregateWindow()` function applies an aggregate function to fixed windows of time.
_**Function type:** Aggregate_
```js
aggregateWindow(
every: 1m,
fn: mean,
columns: ["_value"],
timeColumn: "_stop",
timeDst: "_time",
createEmpty: true
)
```
As data is windowed into separate tables and aggregated, the `_time` column is dropped from each group key.
This helper copies the timestamp from a remaining column into the `_time` column.
View the [function definition](#function-definition).
## Parameters
### every
The duration of windows.
_**Data type:** Duration_
### fn
The aggregate function used in the operation.
_**Data type:** Function_
### columns
List of columns on which to operate.
Defaults to `["_value"]`.
_**Data type:** Array of strings_
### timeColumn
The time column from which time is copied for the aggregate record.
Defaults to `"_stop"`.
_**Data type:** String_
### timeDst
The "time destination" column to which time is copied for the aggregate record.
Defaults to `"_time"`.
_**Data type:** String_
### createEmpty
For windows without data, this will create an empty window and fill
it with a `null` aggregate value.
Defaults to `true`.
_**Data type:** Boolean_
## Examples
###### Using an aggregate function with default parameters
```js
from(bucket: "telegraf/autogen")
|> range(start: 1h)
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used_percent")
|> aggregateWindow(
every: 5m,
fn: mean
)
```
####### Specifying parameters of the aggregate function
To use `aggregateWindow()` aggregate functions that don't provide defaults for required parameters,
for the `fn` parameter, define an anonymous function with `columns` and `tables` parameters
that pipe-forwards tables into the aggregate function with all required parameters defined:
```js
from(bucket: "telegraf/autogen")
|> range(start: 1h)
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used_percent")
|> aggregateWindow(
every: 5m,
fn: (columns, tables=<-) => tables |> percentile(percentile: 0.99, columns:columns)
)
```
## Function definition
```js
aggregateWindow = (every, fn, columns=["_value"], timeColumn="_stop", timeDst="_time", tables=<-) =>
tables
|> window(every:every)
|> fn(columns:columns)
|> duplicate(column:timeColumn, as:timeDst)
|> window(every:inf, timeColumn:timeDst)
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[InfluxQL aggregate functions](https://docs.influxdata.com/influxdb/latest/query_language/functions/#aggregations)
[GROUP BY time()](https://docs.influxdata.com/influxdb/latest/query_language/data_exploration/#the-group-by-clause)

View File

@ -0,0 +1,45 @@
---
title: count() function
description: The count() function outputs the number of non-null records in each aggregated column.
menu:
v2_0_ref:
name: count
parent: Aggregates
weight: 1
---
The `count()` function outputs the number of records in each aggregated column.
It counts both null and non-null records.
_**Function type:** Aggregate_
_**Output data type:** Integer_
```js
count(columns: ["_value"])
```
## Parameters
### columns
A list of columns on which to operate
Defaults to `["_value"]`.
_**Data type: Array of strings**_
## Examples
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> count()
```
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> count(columns: ["_value"])
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[COUNT()](https://docs.influxdata.com/influxdb/latest/query_language/functions/#count)

View File

@ -0,0 +1,67 @@
---
title: cov() function
description: The cov() function computes the covariance between two streams by first joining the streams, then performing the covariance operation.
menu:
v2_0_ref:
name: cov
parent: Aggregates
weight: 1
---
The `cov()` function computes the covariance between two streams by first joining the streams,
then performing the covariance operation.
_**Function type:** Aggregate
_**Output data type:** Float_
```js
cov(x: table1, y: table2, on: ["_time", "_field"], pearsonr: false)
```
## Parameters
### x
One input stream used to calculate the covariance.
_**Data type:** Object_
### y
The other input table used to calculate the covariance.
_**Data type:** Object_
### on
The list of columns on which to join.
_**Data type:** Array of strings_
### pearsonr
Indicates whether the result should be normalized to be the Pearson R coefficient.
_**Data type:** Boolean_
## Examples
```js
table1 = from(bucket: "telegraf/autogen")
|> range(start: -15m)
|> filter(fn: (r) =>
r._measurement == "measurement_1"
)
table2 = from(bucket: "telegraf/autogen")
|> range(start: -15m)
|> filter(fn: (r) =>
r._measurement == "measurement_2"
)
cov(x: table1, y: table2, on: ["_time", "_field"])
```
## Function definition
```js
cov = (x,y,on,pearsonr=false) =>
join( tables:{x:x, y:y}, on:on )
|> covariance(pearsonr:pearsonr, columns:["_value_x","_value_y"])
```

View File

@ -0,0 +1,46 @@
---
title: covariance() function
description: The covariance() function computes the covariance between two columns.
menu:
v2_0_ref:
name: covariance
parent: Aggregates
weight: 1
---
The `covariance()` function computes the covariance between two columns.
_**Function type:** Aggregate_
_**Output data type:** Float_
```js
covariance(columns: ["column_x", "column_y"], pearsonr: false, valueDst: "_value")
```
## Parameters
### columns
A list of columns on which to operate.
_**Data type:** Array of strings_
{{% note %}}
Exactly two columns must be provided to the `columns` property.
{{% /note %}}
### pearsonr
Indicates whether the result should be normalized to be the Pearson R coefficient.
_**Data type:** Boolean_
### valueDst
The column into which the result will be placed. Defaults to `"_value"`.
_**Data type:** String_
## Examples
```js
from(bucket: "telegraf/autogen")
|> range(start:-5m)
|> covariance(columns: ["x", "y"])
```

View File

@ -0,0 +1,63 @@
---
title: derivative() function
description: The derivative() function computes the rate of change per unit of time between subsequent non-null records.
menu:
v2_0_ref:
name: derivative
parent: Aggregates
weight: 1
---
The `derivative()` function computes the rate of change per [`unit`](#unit) of time between subsequent non-null records.
It assumes rows are ordered by the `_time` column.
The output table schema will be the same as the input table.
_**Function type:** Aggregate_
_**Output data type:** Float_
```js
derivative(
unit: 1s,
nonNegative: false,
columns: ["_value"],
timeSrc: "_time"
)
```
## Parameters
### unit
The time duration used when creating the derivative.
Defaults to `1s`.
_**Data type:** Duration_
### nonNegative
Indicates if the derivative is allowed to be negative.
When set to `true`, if a value is less than the previous value, it is assumed the previous value should have been a zero.
_**Data type:** Boolean_
### columns
A list of columns on which to compute the derivative.
Defaults to `["_value"]`.
_**Data type:** Array of strings_
### timeSrc
The column containing time values.
Defaults to `"_time"`.
_**Data type:** String_
## Examples
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> derivative(unit: 1s, nonNegative: true)
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[DERIVATIVE()](https://docs.influxdata.com/influxdb/latest/query_language/functions/#derivative)

View File

@ -0,0 +1,94 @@
---
title: difference() function
description: The difference() function computes the difference between subsequent non-null records.
menu:
v2_0_ref:
name: difference
parent: Aggregates
weight: 1
---
The `difference()` function computes the difference between subsequent records.
Every user-specified column of numeric type is subtracted while others are kept intact.
_**Function type:** Aggregate_
_**Output data type:** Float_
```js
difference(nonNegative: false, columns: ["_value"])
```
## Parameters
### nonNegative
Indicates if the difference is allowed to be negative.
When set to `true`, if a value is less than the previous value, it is assumed the previous value should have been a zero.
_**Data type:** Boolean_
### columns
A list of columns on which to compute the difference.
Defaults to `["_value"]`.
_**Data type:** Array of strings_
## Subtraction rules for numeric types
- The difference between two non-null values is their algebraic difference;
or `null`, if the result is negative and `nonNegative: true`;
- `null` minus some value is always `null`;
- Some value `v` minus `null` is `v` minus the last non-null value seen before `v`;
or `null` if `v` is the first non-null value seen.
## Examples
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> difference()
```
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> difference(nonNegative: true)
```
### Example data transformation
###### Input table
| _time | A | B | C | tag |
|:-----:|:----:|:----:|:----:|:---:|
| 0001 | null | 1 | 2 | tv |
| 0002 | 6 | 2 | null | tv |
| 0003 | 4 | 2 | 4 | tv |
| 0004 | 10 | 10 | 2 | tv |
| 0005 | null | null | 1 | tv |
#### With nonNegative set to false
```js
|> difference(nonNegative: false)
```
###### Output table
| _time | A | B | C | tag |
|:-----:|:----:|:----:|:----:|:---:|
| 0002 | null | 1 | null | tv |
| 0003 | -2 | 0 | 2 | tv |
| 0004 | 6 | 8 | -2 | tv |
| 0005 | null | null | -1 | tv |
#### With nonNegative set to true
```js
|> difference(nonNegative: true):
```
###### Output table
| _time | A | B | C | tag |
|:-----:|:----:|:----:|:----:|:---:|
| 0002 | null | 1 | null | tv |
| 0003 | null | 0 | 2 | tv |
| 0004 | 6 | 8 | null | tv |
| 0005 | null | null | null | tv |
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[DIFFERENCE()](https://docs.influxdata.com/influxdb/latest/query_language/functions/#difference)

View File

@ -0,0 +1,83 @@
---
title: histogramQuantile() function
description: The `histogramQuantile()` function approximates a quantile given a histogram that approximates the cumulative distribution of the dataset.
menu:
v2_0_ref:
name: histogramQuantile
parent: Aggregates
weight: 1
---
The `histogramQuantile()` function approximates a quantile given a histogram that
approximates the cumulative distribution of the dataset.
Each input table represents a single histogram.
The histogram tables must have two columns a count column and an upper bound column.
The count is the number of values that are less than or equal to the upper bound value.
The table can have any number of records, each representing an entry in the histogram.
The counts must be monotonically increasing when sorted by upper bound.
If any values in the count column or upper bound column are `null`, it returns an error.
Linear interpolation between the two closest bounds is used to compute the quantile.
If the either of the bounds used in interpolation are infinite,
then the other finite bound is used and no interpolation is performed.
The output table has the same group key as the input table.
Columns not part of the group key are removed and a single value column of type float is added.
The count and upper bound columns must not be part of the group key.
The value column represents the value of the desired quantile from the histogram.
_**Function type:** Aggregate_
_**Output data type:** Float_
```js
histogramQuantile(quantile: 0.5, countColumn: "_value", upperBoundColumn: "le", valueColumn: "_value", minValue: 0)
```
## Parameters
### quantile
A value between 0 and 1 indicating the desired quantile to compute.
_**Data type:** Float_
### countColumn
The name of the column containing the histogram counts.
The count column type must be float.
Defaults to `"_value"`.
_**Data type:** String_
### upperBoundColumn
The name of the column containing the histogram upper bounds.
The upper bound column type must be float.
Defaults to `"le"`.
_**Data type:** String_
### valueColumn
The name of the output column which will contain the computed quantile.
Defaults to `"_value"`.
_**Data type:** String_
### minValue
The assumed minimum value of the dataset.
When the quantile falls below the lowest upper bound, interpolation is performed between `minValue` and the lowest upper bound.
When `minValue` is equal to negative infinity, the lowest upper bound is used.
Defaults to `0`.
_**Data type:** Float_
{{% note %}}
When the quantile falls below the lowest upper bound,
interpolation is performed between `minValue` and the lowest upper bound.
When `minValue` is equal to negative infinity, the lowest upper bound is used.
{{% /note %}}
## Examples
##### Compute the 90th quantile
```js
histogramQuantile(quantile: 0.9)
```

View File

@ -0,0 +1,66 @@
---
title: increase() function
description: The increase() function calculates the total non-negative difference between values in a table.
menu:
v2_0_ref:
name: increase
parent: Aggregates
weight: 1
---
The `increase()` function calculates the total non-negative difference between values in a table.
A main use case is tracking changes in counter values which may wrap over time
when they hit a threshold or are reset.
In the case of a wrap/reset, we can assume that the absolute delta between two
points will be at least their non-negative difference.
_**Function type:** Aggregate_
_**Output data type:** Float_
```js
increase(columns: ["_values"])
```
## Parameters
### columns
The list of columns for which the increase is calculated.
Defaults to `["_value"]`.
_**Data type:** Array of strings_
## Examples
```js
from(bucket: "telegraf/autogen")
|> range(start: -24h)
|> filter(fn: (r) =>
r._measurement == "system" and
r._field == "n_users"
)
|> increase()
```
Given the following input table:
| _time | _value |
| ----- | ------ |
| 00001 | 1 |
| 00002 | 5 |
| 00003 | 3 |
| 00004 | 4 |
`increase()` produces the following table:
| _time | _value |
| ----- | ------ |
| 00002 | 4 |
| 00003 | 7 |
| 00004 | 8 |
## Function definition
```js
increase = (tables=<-, columns=["_value"]) =>
tables
|> difference(nonNegative: true, columns:columns)
|> cumulativeSum()
```

View File

@ -0,0 +1,48 @@
---
title: integral() function
description: The integral() function computes the area under the curve per unit of time of subsequent non-null records.
menu:
v2_0_ref:
name: integral
parent: Aggregates
weight: 1
---
The `integral()` function computes the area under the curve per [`unit`](#unit) of time of subsequent non-null records.
The curve is defined using `_time` as the domain and record values as the range.
_**Function type:** Aggregate_
_**Output data type:** Float_
```js
integral(unit: 10s, columns: ["_value"])
```
## Parameters
### unit
The time duration used when computing the integral.
_**Data type:** Duration_
### columns
A list of columns on which to operate.
Defaults to `["_value"]`.
_**Data type:** Array of strings_
## Examples
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> filter(fn: (r) =>
r._measurement == "cpu" and
r._field == "usage_system"
)
|> integral(unit:10s)
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[INTEGRAL()](https://docs.influxdata.com/influxdb/latest/query_language/functions/#integral)

View File

@ -0,0 +1,42 @@
---
title: mean() function
description: The mean() function computes the mean or average of non-null records in the input table.
menu:
v2_0_ref:
name: mean
parent: Aggregates
weight: 1
---
The `mean()` function computes the mean or average of non-null records in the input table.
_**Function type:** Aggregate_
_**Output data type:** Float_
```js
mean(columns: ["_value"])
```
## Parameters
### columns
A list of columns on which to compute the mean.
Defaults to `["_value"]`.
_**Data type:** Array of strings_
## Examples
```js
from(bucket:"telegraf/autogen")
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used_percent")
|> range(start:-12h)
|> window(every:10m)
|> mean()
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[MEAN()](https://docs.influxdata.com/influxdb/latest/query_language/functions/#mean)

View File

@ -0,0 +1,97 @@
---
title: median() function
description: The `median()` function returns the median `_value` of an input table or all non-null records in the input table with values that fall within the 50th percentile.
menu:
v2_0_ref:
name: median
parent: Aggregates
weight: 1
---
The `median()` function is a special application of the [`percentile()` function](/v2.0/reference/flux/functions/transformations/aggregates/percentile)
that returns the median `_value` of an input table or all non-null records in the input table
with values that fall within the 50th percentile depending on the [method](#method) used.
_**Function type:** Selector or Aggregate_
_**Output data type:** Object_
```js
median(method: "estimate_tdigest", compression: 0.0)
```
When using the `estimate_tdigest` or `exact_mean` methods, it outputs non-null
records with values that fall within the 50th percentile.
When using the `exact_selector` method, it outputs the non-null record with the
value that represents the 50th percentile.
{{% note %}}
The `median()` function can only be used with float value types.
It is a special application of the [`percentile()` function](/v2.0/reference/flux/functions/transformations/aggregates/percentile) which
uses an approximation implementation that requires floats.
You can convert your value column to a float column using the [`toFloat()` function](/v2.0/reference/flux/functions/transformations/type-conversions/tofloat).
{{% /note %}}
## Parameters
### method
Defines the method of computation. Defaults to `"estimate_tdigest"`.
_**Data type:** String_
The available options are:
##### estimate_tdigest
An aggregate method that uses a [t-digest data structure](https://github.com/tdunning/t-digest)
to compute an accurate percentile estimate on large data sources.
##### exact_mean
An aggregate method that takes the average of the two points closest to the percentile value.
##### exact_selector
A selector method that returns the data point for which at least percentile points are less than.
### compression
Indicates how many centroids to use when compressing the dataset.
A larger number produces a more accurate result at the cost of increased memory requirements.
Defaults to 1000.
_**Data type:** Float_
## Examples
###### Median as an aggregate
```js
from(bucket: "telegraf/autogen")
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used_percent"
)
|> range(start:-12h)
|> window(every:10m)
|> median()
```
###### Median as a selector
```js
from(bucket: "telegraf/autogen")
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used_percent"
)
|> range(start:-12h)
|> window(every:10m)
|> median(method: "exact_selector")
```
## Function definition
```js
median = (method="estimate_tdigest", compression=0.0, tables=<-) =>
percentile(percentile:0.5, method:method, compression:compression)
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[MEDIAN()](https://docs.influxdata.com/influxdb/latest/query_language/functions/#median)

View File

@ -0,0 +1,61 @@
---
title: pearsonr() function
description: The pearsonr() function computes the Pearson R correlation coefficient between two streams by first joining the streams, then performing the covariance operation normalized to compute R.
menu:
v2_0_ref:
name: pearsonr
parent: Aggregates
weight: 1
---
The `pearsonr()` function computes the Pearson R correlation coefficient between two streams
by first joining the streams, then performing the covariance operation normalized to compute R.
_**Function type:** Aggregate_
_**Output data type:** Float_
```js
pearsonr(x: stream1, y: stream2, on: ["_time", "_field"])
```
## Parameters
### x
First input stream used in the operation.
_**Data type:** Object_
### y
Second input stream used in the operation.
_**Data type:** Object_
### on
The list of columns on which to join.
_**Data type:** Array of strings_
## Examples
```js
stream1 = from(bucket:"telegraf/autogen")
|> range(start:-15m)
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used"
)
stream2 = from(bucket:"telegraf/autogen")
|> range(start:-15m)
|> filter(fn: (r) => r
._measurement == "mem" and
r._field == "available"
)
pearsonr(x: stream1, y: stream2, on: ["_time", "_field"])
```
## Function definition
```js
pearsonr = (x,y,on) =>
cov(x:x, y:y, on:on, pearsonr:true)
```

View File

@ -0,0 +1,97 @@
---
title: percentile() function
description: The percentile() function outputs non-null records with values that fall within the specified percentile or the non-null record with the value that represents the specified percentile.
menu:
v2_0_ref:
name: percentile
parent: Aggregates
weight: 1
---
The `percentile()` function returns records from an input table with `_value`s that fall within
a specified percentile or it returns the record with the `_value` that represents the specified percentile.
Which it returns depends on the [method](#method) used.
_**Function type:** Aggregate or Selector_
_**Output data type:** Float or Object_
```js
percentile(columns: ["_value"], percentile: 0.99, method: "estimate_tdigest", compression: 1000)
```
When using the `estimate_tdigest` or `exact_mean` methods, it outputs non-null
records with values that fall within the specified percentile.
When using the `exact_selector` method, it outputs the non-null record with the
value that represents the specified percentile.
## Parameters
### columns
A list of columns on which to compute the percentile.
Defaults to `["_value"]`.
_**Data type:** Array of strings_
### percentile
A value between 0 and 1 indicating the desired percentile.
_**Data type:** Float_
### method
Defines the method of computation.
_**Data type:** String_
The available options are:
##### estimate_tdigest
An aggregate method that uses a [t-digest data structure](https://github.com/tdunning/t-digest)
to compute an accurate percentile estimate on large data sources.
##### exact_mean
An aggregate method that takes the average of the two points closest to the percentile value.
##### exact_selector
A selector method that returns the data point for which at least percentile points are less than.
### compression
Indicates how many centroids to use when compressing the dataset.
A larger number produces a more accurate result at the cost of increased memory requirements.
Defaults to 1000.
_**Data type:** Float_
## Examples
###### Percentile as an aggregate
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> filter(fn: (r) =>
r._measurement == "cpu" and
r._field == "usage_system")
|> percentile(
percentile: 0.99,
method: "estimate_tdigest",
compression: 1000
)
```
###### Percentile as a selector
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> filter(fn: (r) =>
r._measurement == "cpu" and
r._field == "usage_system")
|> percentile(
percentile: 0.99,
method: "exact_selector"
)
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[PERCENTILE()](https://docs.influxdata.com/influxdb/latest/query_language/functions/#percentile)

View File

@ -0,0 +1,36 @@
---
title: skew() function
description: The skew() function outputs the skew of non-null records as a float.
menu:
v2_0_ref:
name: skew
parent: Aggregates
weight: 1
---
The `skew()` function outputs the skew of non-null records as a float.
_**Function type:** Aggregate_
_**Output data type:** Float_
```js
skew(columns: ["_value"])
```
## Parameters
### columns
Specifies a list of columns on which to operate. Defaults to `["_value"]`.
_**Data type:** Array of strings_
## Examples
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> filter(fn: (r) =>
r._measurement == "cpu" and
r._field == "usage_system"
)
|> skew()
```

View File

@ -0,0 +1,46 @@
---
title: spread() function
description: The spread() function outputs the difference between the minimum and maximum values in each specified column.
menu:
v2_0_ref:
name: spread
parent: Aggregates
weight: 1
---
The `spread()` function outputs the difference between the minimum and maximum values in each specified column.
Only `uint`, `int`, and `float` column types can be used.
The type of the output column depends on the type of input column:
- For input columns with type `uint` or `int`, the output is an `int`
- For input columns with type `float` the output is a float.
_**Function type:** Aggregate_
_**Output data type:** Integer or Float (inherited from input column type)_
```js
spread(columns: ["_value"])
```
## Parameters
### columns
Specifies a list of columns on which to operate. Defaults to `["_value"]`.
_**Data type:** Array of strings_
## Examples
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> filter(fn: (r) =>
r._measurement == "cpu" and
r._field == "usage_system"
)
|> spread()
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[SPREAD()](https://docs.influxdata.com/influxdb/latest/query_language/functions/#spread)

View File

@ -0,0 +1,42 @@
---
title: stddev() function
description: The stddev() function computes the standard deviation of non-null records in specified columns.
menu:
v2_0_ref:
name: stddev
parent: Aggregates
weight: 1
---
The `stddev()` function computes the standard deviation of non-null records in specified columns.
_**Function type:** Aggregate_
_**Output data type:** Float_
```js
stddev(columns: ["_value"])
```
## Parameters
### columns
Specifies a list of columns on which to operate.
Defaults to `["_value"]`.
_**Data type:** Array of strings_
## Examples
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> filter(fn: (r) =>
r._measurement == "cpu" and
r._field == "usage_system"
)
|> stddev()
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[STDDEV()](https://docs.influxdata.com/influxdb/latest/query_language/functions/#stddev)

View File

@ -0,0 +1,42 @@
---
title: sum() function
description: The sum() function computes the sum of non-null records in specified columns.
menu:
v2_0_ref:
name: sum
parent: Aggregates
weight: 1
---
The `sum()` function computes the sum of non-null records in specified columns.
_**Function type:** Aggregate_
_**Output data type:** Integer, UInteger, or Float (inherited from column type)_
```js
sum(columns: ["_value"])
```
## Parameters
### columns
Specifies a list of columns on which to operate.
Defaults to `["_value"]`.
_**Data type:** Array of strings_
## Examples
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> filter(fn: (r) =>
r._measurement == "cpu" and
r._field == "usage_system"
)
|> sum()
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[SUM()](https://docs.influxdata.com/influxdb/latest/query_language/functions/#sum)

View File

@ -0,0 +1,57 @@
---
title: columns() function
description: >
The columns() function lists the column labels of input tables.
For each input table, it outputs a table with the same group key columns,
plus a new column containing the labels of the input table's columns.
menu:
v2_0_ref:
name: columns
parent: Transformations
weight: 1
---
The `columns()` function lists the column labels of input tables.
For each input table, it outputs a table with the same group key columns,
plus a new column containing the labels of the input table's columns.
Each row in an output table contains the group key value and the label of one column of the input table.
Each output table has the same number of rows as the number of columns of the input table.
_**Function type:** Transformation_
```js
columns(column: "_value")
```
## Parameters
### column
The name of the output column in which to store the column labels.
Defaults to `"_value"`.
_**Data type:** String_
## Examples
```js
from(bucket: "telegraf/autogen")
|> range(start: -30m)
|> columns(column: "labels")
```
##### Get every possible column label in a single table
```js
from(bucket: "telegraf/autogen")
|> range(start: -30m)
|> columns()
|> keep(columns: ["_value"])
|> group()
|> distinct()
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[SHOW MEASUREMENTS](https://docs.influxdata.com/influxdb/latest/query_language/schema_exploration/#show-measurements)
[SHOW FIELD KEYS](https://docs.influxdata.com/influxdb/latest/query_language/schema_exploration/#show-field-keys)
[SHOW TAG KEYS](https://docs.influxdata.com/influxdb/latest/query_language/schema_exploration/#show-tag-keys)
[SHOW SERIES](https://docs.influxdata.com/influxdb/latest/query_language/schema_exploration/#show-tag-keys)

View File

@ -0,0 +1,43 @@
---
title: cumulativeSum() function
description: The cumulativeSum() function computes a running sum for non-null records in the table.
menu:
v2_0_ref:
name: cumulativeSum
parent: Transformations
weight: 1
---
The `cumulativeSum()` function computes a running sum for non-null records in the table.
The output table schema will be the same as the input table.
_**Function type:** Transformation
_**Output data type:** Float_
```js
cumulativeSum(columns: ["_value"])
```
## Parameters
### columns
A list of columns on which to operate.
Defaults to `["_value"]`.
_**Data type:** Array of strings_
## Examples
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> filter(fn: (r) =>
r._measurement == "disk" and
r._field == "used_percent"
)
|> cumulativeSum(columns: ["_value"])
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[CUMULATIVE_SUM()](https://docs.influxdata.com/influxdb/latest/query_language/functions/#cumulative-sum)

View File

@ -0,0 +1,61 @@
---
title: drop() function
description: The drop() function removes specified columns from a table.
menu:
v2_0_ref:
name: drop
parent: Transformations
weight: 1
---
The `drop()` function removes specified columns from a table.
Columns are specified either through a list or a predicate function.
When a dropped column is part of the group key, it will be removed from the key.
If a specified column is not present in a table, it will return an error.
_**Function type:** Transformation_
_**Output data type:** Object_
```js
drop(columns: ["col1", "col2"])
// OR
drop(fn: (column) => column =~ /usage*/)
```
## Parameters
### columns
Columns to be removed from the table.
Cannot be used with `fn`.
_**Data type:** Array of strings_
### fn
A predicate function which takes a column name as a parameter (`column`) and returns
a boolean indicating whether or not the column should be removed from the table.
Cannot be used with `columns`.
_**Data type:** Function_
## Examples
##### Drop a list of columns
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> drop(columns: ["host", "_measurement"])
```
##### Drop columns matching a predicate
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> drop(fn: (column) => column =~ /usage*/)
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[DROP MEASUREMENT](https://docs.influxdata.com/influxdb/latest/query_language/database_management/#delete-measurements-with-drop-measurement)

View File

@ -0,0 +1,40 @@
---
title: duplicate() function
description: The duplicate() function duplicates a specified column in a table.
menu:
v2_0_ref:
name: duplicate
parent: Transformations
weight: 1
---
The `duplicate()` function duplicates a specified column in a table.
If the specified column is part of the group key, it will be duplicated, but will
not be part of the output table's group key.
_**Function type:** Transformation_
_**Output data type:** Object_
```js
duplicate(column: "column-name", as: "duplicate-name")
```
## Parameters
### column
The column to duplicate.
_**Data type:** String_
### as
The name assigned to the duplicate column.
_**Data type:** String_
## Examples
```js
from(bucket: "telegraf/autogen")
|> range(start:-5m)
|> filter(fn: (r) => r._measurement == "cpu")
|> duplicate(column: "host", as: "server")
```

View File

@ -0,0 +1,72 @@
---
title: fill() function
description: The fill() function filters data based on conditions defined in a predicate function (fn).
menu:
v2_0_ref:
name: fill
parent: Transformations
weight: 1
---
The `filter()` function replaces all null values in an input stream and replace them with a non-null value.
The output stream is the same as the input stream with all null values replaced in the specified column.
_**Function type:** Transformation_
```js
fill(column: "_value", value: 0.0)
// OR
fill(column: "_value", usePrevious: true)
```
## Parameters
### column
The column in which to replace null values. Defaults to `"_value"`.
_**Data type:** String_
### value
The constant value to use in place of nulls.
The value type must match the value type of the `column`.
_**Data type:** Boolean | Integer | UInteger | Float | String | Time | Duration_
### usePrevious
When `true`, assigns the value set in the previous non-null row.
> Cannot be used with `value`.
_**Data type:** Boolean | Integer | UInteger | Float | String | Time | Duration_
## Examples
##### Fill null values with a specified non-null value
```js
from(bucket: "telegraf/autogen")
|> range(start: -1h)
|> filter(fn: (r) =>
r._measurement == "cpu" and
r.cpu == "cpu-total"
)
|> fill(value: 0.0)
```
##### Fill null values with the previous non-null value
```js
from(bucket: "telegraf/autogen")
|> range(start: -1h)
|> filter(fn: (r) =>
r._measurement == "cpu" and
r.cpu == "cpu-total"
)
|> fill(usePrevious: true)
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[FILL](https://docs.influxdata.com/influxdb/latest/query_language/data_exploration/#group-by-time-intervals-and-fill)

View File

@ -0,0 +1,48 @@
---
title: filter() function
description: The filter() function filters data based on conditions defined in a predicate function (fn).
menu:
v2_0_ref:
name: filter
parent: Transformations
weight: 1
---
The `filter()` function filters data based on conditions defined in a predicate function ([`fn`](#fn)).
The output tables have the same schema as the corresponding input tables.
_**Function type:** Transformation_
_**Output data type:** Object_
```js
filter(fn: (r) => r._measurement == "cpu")
```
## Parameters
### fn
A single argument function that evaluates true or false.
Records are passed to the function.
Those that evaluate to true are included in the output tables.
_**Data type:** Function_
{{% note %}}
Objects evaluated in `fn` functions are represented by `r`, short for "record" or "row".
{{% /note %}}
## Examples
```js
from(bucket:"telegraf/autogen")
|> range(start:-1h)
|> filter(fn: (r) =>
r._measurement == "cpu" and
r._field == "usage_system" and
r.cpu == "cpu-total"
)
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[SELECT](https://docs.influxdata.com/influxdb/latest/query_language/data_exploration/#the-basic-select-statement)

View File

@ -0,0 +1,80 @@
---
title: group() function
description: The group() function groups records based on their values for specific columns.
menu:
v2_0_ref:
name: group
parent: Transformations
weight: 1
---
The `group()` function groups records based on their values for specific columns.
It produces tables with new group keys based on provided properties.
_**Function type:** Transformation_
```js
group(columns: ["host", "_measurement"], mode:"by")
// OR
group(columns: ["_time"], mode:"except")
// OR
group()
```
## Parameters
### columns
List of columns to use in the grouping operation.
Defaults to `[]`.
_**Data type:** Array of strings_
### mode
The mode used to group columns.
_**Data type:** String_
The following options are available:
- by
- except
Defaults to `"by"`.
#### by
Groups records by columns defined in the [`columns`](#columns) parameter.
#### except
Groups records by all columns **except** those defined in the [`columns`](#columns) parameter.
## Examples
###### Group by host and measurement
```js
from(bucket: "telegraf/autogen")
|> range(start: -30m)
|> group(columns: ["host", "_measurement"])
```
###### Group by everything except time
```js
from(bucket: "telegraf/autogen")
|> range(start: -30m)
|> group(columns: ["_time"], mode: "except")
```
###### Remove all grouping
```js
from(bucket: "telegraf/autogen")
|> range(start: -30m)
|> group()
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[GROUP BY](https://docs.influxdata.com/influxdb/latest/query_language/data_exploration/#the-group-by-clause) _(similar but different)_

View File

@ -0,0 +1,78 @@
---
title: histogram() function
description: The histogram() function approximates the cumulative distribution of a dataset by counting data frequencies for a list of bins.
menu:
v2_0_ref:
name: histogram
parent: Transformations
weight: 1
---
The `histogram()` function approximates the cumulative distribution of a dataset by counting data frequencies for a list of bins.
A bin is defined by an upper bound where all data points that are less than or equal to the bound are counted in the bin.
The bin counts are cumulative.
Each input table is converted into a single output table representing a single histogram.
The output table has a the same group key as the input table.
Columns not part of the group key are removed and an upper bound column and a count column are added.
_**Function type:** Transformation_
_**Output data type:** Object_
```js
histogram(column: "_value", upperBoundColumn: "le", countColumn: "_value", bins: [50.0, 75.0, 90.0], normalize: false)
```
## Parameters
### column
The name of a column containing input data values.
The column type must be float.
Defaults to `"_value"`.
_**Data type:** String_
### upperBoundColumn
The name of the column in which to store the histogram's upper bounds.
Defaults to `"le"`.
_**Data type:** String_
### countColumn
The name of the column in which to store the histogram counts.
Defaults to `"_value"`.
_**Data type:** String_
### bins
A list of upper bounds to use when computing the histogram frequencies.
Bins should contain a bin whose bound is the maximum value of the data set.
This value can be set to positive infinity if no maximum is known.
_**Data type:** Array of floats_
#### Bin helper functions
The following helper functions can be used to generated bins.
[linearBins()](/v2.0/reference/flux/functions/misc/linearbins)
[logarithmicBins()](/v2.0/reference/flux/functions/misc/logarithmicbins)
### normalize
When `true`, will convert the counts into frequency values between 0 and 1.
Defaults to `false`.
_**Data type:** Boolean_
{{% note %}}
Normalized histograms cannot be aggregated by summing their counts.
{{% /note %}}
## Examples
##### Histogram with dynamically generated bins
```js
// Dynamically generate 10 bins from 0,10,20,...,100
histogram(
bins: linearBins(start:0.0, width:10.0, count:10)
)
```

View File

@ -0,0 +1,40 @@
---
title: influxFieldsAsCols() function
description: The influxFieldsAsCols() function is pivots a table and automatically aligns fields within each input table that have the same timestamp.
aliases:
- /v2.0/reference/flux/functions/inputs/fromrows
menu:
v2_0_ref:
name: influxFieldsAsCols
parent: Transformations
weight: 1
---
The `influxFieldsAsCols()` function is a special application of the `pivot()` function that
automatically aligns fields within each input table that have the same timestamp.
_**Function type:** Transformation_
```js
influxFieldsAsCols()
```
## Examples
```js
from(bucket:"telegraf/autogen")
|> range(start: -1h)
|> filter(fn: (r) => r._measurement == "cpu")
|> influxFieldsAsCols()
|> keep(columns: ["_time", "cpu", "usage_idle", "usage_user"])
```
## Function definition
```js
influxFieldsAsCols = (tables=<-) =>
tables
|> pivot(
rowKey:["_time"],
columnKey: ["_field"],
valueColumn: "_value"
)
```

View File

@ -0,0 +1,133 @@
---
title: join() function
description: The join() function merges two or more input streams whose values are equal on a set of common columns into a single output stream.
menu:
v2_0_ref:
name: join
parent: Transformations
weight: 1
---
The `join()` function merges two or more input streams whose values are equal on
a set of common columns into a single output stream.
Null values are not considered equal when comparing column values.
The resulting schema is the union of the input schemas.
The resulting group key is the union of the input group keys.
_**Function type:** Transformation_
_**Output data type:** Object_
```js
join(tables: {key1: table1, key2: table2}, on: ["_time", "_field"], method: "inner")
```
#### Output schema
The column schema of the output stream is the union of the input schemas.
It is also the same for the output group key.
Columns are renamed using the pattern `<column>_<table>` to prevent ambiguity in joined tables.
##### Example:
If you have two streams of data, **data_1** and **data_2**, with the following group keys:
**data_1**: `[_time, _field]`
**data_2**: `[_time, _field]`
And join them with:
```js
join(tables: {d1: data_1, d2: data_2}, on: ["_time"])
```
The resulting group keys for all tables will be: `[_time, _field_d1, _field_d2]`
## Parameters
### tables
The map of streams to be joined. <span style="color:#FF8564; font-weight:700;">Required</span>.
_**Data type:** Object_
> `join()` currently only supports two input streams.
### on
The list of columns on which to join. <span style="color:#FF8564; font-weight:700;">Required</span>.
_**Data type:** Array of strings_
### method
The method used to join. Defaults to `"inner"`.
_**Data type:** String_
###### Possible Values:
- `inner`
- `cross`
- `left`
- `right`
- `full`
{{% note %}}
The `on` parameter and the cross method are mutually exclusive.
{{% /note %}}
## Examples
#### Example join with sample data
Given the following two streams of data:
##### SF_Temp**
| _time | _field | _value |
| ------ |:------:| -------:|
| 0001 | "temp" | 70 |
| 0002 | "temp" | 75 |
| 0003 | "temp" | 72 |
##### NY_Temp**
| _time | _field | _value |
| ------ |:------:| -------:|
| 0001 | "temp" | 55 |
| 0002 | "temp" | 56 |
| 0003 | "temp" | 55 |
And the following join query:
```js
join(
tables: {sf: SF_Temp, ny: NY_Temp},
on: ["_time", "_field"]
)
```
The output will be:
| _time | _field | _value_ny | _value_sf |
| ----- | ------ | ---------:| ---------:|
| 0001 | "temp" | 55 | 70 |
| 0002 | "temp" | 56 | 75 |
| 0003 | "temp" | 55 | 72 |
#### Cross-measurement join
```js
data_1 = from(bucket:"telegraf/autogen")
|> range(start:-15m)
|> filter(fn: (r) =>
r._measurement == "cpu" and
r._field == "usage_system"
)
data_2 = from(bucket:"telegraf/autogen")
|> range(start:-15m)
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used_percent"
)
join(
tables: {d1: data_1, d2: data_2},
on: ["_time", "host"]
)
```

View File

@ -0,0 +1,55 @@
---
title: keep() function
description: The keep() function returns a table containing only the specified columns.
menu:
v2_0_ref:
name: keep
parent: Transformations
weight: 1
---
The `keep()` function returns a table containing only the specified columns, ignoring all others.
Only columns in the group key that are also specified in the `keep()` function will be kept in the resulting group key.
_It is the inverse of [`drop`](/v2.0/reference/flux/functions/transformations/drop)._
_**Function type:** Transformation_
_**Output data type:** Object_
```js
keep(columns: ["col1", "col2"])
// OR
keep(fn: (column) => column =~ /inodes*/)
```
## Parameters
### columns
Columns that should be included in the resulting table.
Cannot be used with `fn`.
_**Data type:** Array of strings_
### fn
A predicate function which takes a column name as a parameter (`column`) and returns
a boolean indicating whether or not the column should be included in the resulting table.
Cannot be used with `columns`.
_**Data type:** Function_
## Examples
##### Keep a list of columns
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> keep(columns: ["_time", "_value"])
```
##### Keep all columns matching a predicate
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> keep(fn: (column) => column =~ /inodes*/)
```

View File

@ -0,0 +1,57 @@
---
title: keys() function
description: >
The keys() function outputs the group key of input tables.
For each input table, it outputs a table with the same group key columns, plus a
_value column containing the labels of the input table's group key.
menu:
v2_0_ref:
name: keys
parent: Transformations
weight: 1
---
The `keys()` function outputs the group key of input tables.
For each input table, it outputs a table with the same group key columns, plus a
`_value` column containing the labels of the input table's group key.
Each row in an output table contains the group key value and the label of one column in the group key of the input table.
Each output table has the same number of rows as the size of the group key of the input table.
_**Function type:** Transformation_
```js
keys(column: "_value")
```
## Parameters
### column
The name of the output column in which to store the group key labels.
Defaults to `"_value"`.
_**Data type:** String_
## Examples
```js
from(bucket: "telegraf/autogen")
|> range(start: -30m)
|> keys(column: "keys")
```
##### Return every possible key in a single table
```js
from(bucket: "telegraf/autogen")
|> range(start: -30m)
|> keys()
|> keep(columns: ["_value"])
|> group()
|> distinct()
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[SHOW MEASUREMENTS](https://docs.influxdata.com/influxdb/latest/query_language/schema_exploration/#show-measurements)
[SHOW FIELD KEYS](https://docs.influxdata.com/influxdb/latest/query_language/schema_exploration/#show-field-keys)
[SHOW TAG KEYS](https://docs.influxdata.com/influxdb/latest/query_language/schema_exploration/#show-tag-keys)
[SHOW SERIES](https://docs.influxdata.com/influxdb/latest/query_language/schema_exploration/#show-tag-keys)

View File

@ -0,0 +1,75 @@
---
title: keyValues() function
description: The keyValues() function returns a table with the input table's group key plus two columns, _key and _value, that correspond to unique column + value pairs from the input table.
menu:
v2_0_ref:
name: keyValues
parent: Transformations
weight: 1
---
The `keyValues()` function returns a table with the input table's group key plus two columns,
`_key` and `_value`, that correspond to unique column + value pairs from the input table.
_**Function type:** Transformation_
_**Output data type:** Object_
```js
keyValues(keyColumns: ["usage_idle", "usage_user"])
// OR
keyValues(fn: (schema) => schema.columns |> filter(fn: (r) => r.label =~ /usage_.*/))
```
## Parameters
{{% note %}}
`keyColumns` and `fn` are mutually exclusive. Only one may be used at a time.
{{% /note %}}
### keyColumns
A list of columns from which values are extracted.
All columns indicated must be of the same type.
Each input table must have all of the columns listed by the `keyColumns` parameter.
_**Data type:** Array of strings_
### fn
Function used to identify a set of columns.
All columns indicated must be of the same type.
_**Data type:** Function_
## Additional requirements
- Only one of `keyColumns` or `fn` may be used in a single call.
- All columns indicated must be of the same type.
- Each input table must have all of the columns listed by the `keyColumns` parameter.
## Examples
##### Get key values from explicitly defined columns
```js
from(bucket: "telegraf/autogen")
|> range(start: -30m)
|> filter(fn: (r) => r._measurement == "cpu")
|> keyValues(keyColumns: ["usage_idle", "usage_user"])
```
##### Get key values from columns matching a regular expression
```js
from(bucket: "telegraf/autogen")
|> range(start: -30m)
|> filter(fn: (r) => r._measurement == "cpu")
|> keyValues(fn: (schema) => schema.columns |> filter(fn: (r) => r.label =~ /usage_.*/))
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[SHOW MEASUREMENTS](https://docs.influxdata.com/influxdb/latest/query_language/schema_exploration/#show-measurements)
[SHOW FIELD KEYS](https://docs.influxdata.com/influxdb/latest/query_language/schema_exploration/#show-field-keys)
[SHOW TAG KEYS](https://docs.influxdata.com/influxdb/latest/query_language/schema_exploration/#show-tag-keys)
[SHOW TAG VALUES](https://docs.influxdata.com/influxdb/latest/query_language/schema_exploration/#show-tag-values)
[SHOW SERIES](https://docs.influxdata.com/influxdb/latest/query_language/schema_exploration/#show-series)

View File

@ -0,0 +1,46 @@
---
title: limit() function
description: The limit() function limits the number of records in output tables to a fixed number (n).
menu:
v2_0_ref:
name: limit
parent: Transformations
weight: 1
---
The `limit()` function limits the number of records in output tables to a fixed number ([`n`](#n)).
One output table is produced for each input table.
Each output table contains the first `n` records after the first `offset` records of the input table.
If the input table has less than `offset + n` records, all records except the first `offset` ones are output.
_**Function type:** Filter_
_**Output data type:** Object_
```js
limit(n:10, offset: 0)
```
## Parameters
### n
The maximum number of records to output.
_**Data type:** Integer_
### offset
The number of records to skip per table before limiting to `n`.
Defaults to `0`.
_**Data type:** Integer_
## Examples
```js
from(bucket:"telegraf/autogen")
|> range(start:-1h)
|> limit(n:10, offset: 1)
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[LIMIT](https://docs.influxdata.com/influxdb/latest/query_language/data_exploration/#the-limit-and-slimit-clauses)

View File

@ -0,0 +1,72 @@
---
title: map() function
description: The map() function applies a function to each record in the input tables.
menu:
v2_0_ref:
name: map
parent: Transformations
weight: 1
---
The `map()` function applies a function to each record in the input tables.
The modified records are assigned to new tables based on the group key of the input table.
The output tables are the result of applying the map function to each record of the input tables.
When the output record contains a different value for the group key, the record is regrouped into the appropriate table.
When the output record drops a column that was part of the group key, that column is removed from the group key.
_**Function type:** Transformation_
_**Output data type:** Object_
```js
map(fn: (r) => r._value * r._value), mergeKey: true)
```
## Parameters
### fn
A single argument function that to apply to each record.
The return value must be an object.
_**Data type:** Function_
{{% note %}}
Objects evaluated in `fn` functions are represented by `r`, short for "record" or "row".
{{% /note %}}
### mergeKey
Indicates if the record returned from `fn` should be merged with the group key.
When merging, all columns on the group key will be added to the record giving precedence to any columns already present on the record.
When not merging, only columns defined on the returned record will be present on the output records.
Defaults to `true`.
_**Data type:** Boolean_
## Examples
###### Square the value of each record
```js
from(bucket:"telegraf/autogen")
|> filter(fn: (r) =>
r._measurement == "cpu" and
r._field == "usage_system" and
r.cpu == "cpu-total"
)
|> range(start:-12h)
|> map(fn: (r) => r._value * r._value)
```
###### Create a new table with new format
```js
from(bucket:"telegraf/autogen")
|> filter(fn: (r) =>
r._measurement == "cpu" and
r._field == "usage_system"
)
|> range(start:-12h)
// create a new table by copying each row into a new format
|> map(fn: (r) => ({
_time: r._time,
app_server: r.host
}))
```

View File

@ -0,0 +1,148 @@
---
title: pivot() function
description: The pivot() function collects values stored vertically (column-wise) in a table and aligns them horizontally (row-wise) into logical sets.
menu:
v2_0_ref:
name: pivot
parent: Transformations
weight: 1
---
The `pivot()` function collects values stored vertically (column-wise) in a table
and aligns them horizontally (row-wise) into logical sets.
_**Function type:** Transformation_
_**Output data type:** Object_
```js
pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
```
The group key of the resulting table is the same as the input tables, excluding columns found in the [`columnKey`](#columnkey) and [`valueColumn`](#valuecolumn) parameters.
This is because these columns are not part of the resulting output table.
Every input row should have a 1:1 mapping to a particular row + column in the output table, determined by its values for the [`rowKey`](#rowkey) and [`columnKey`](#columnkey) parameters.
In cases where more than one value is identified for the same row + column pair, the last value
encountered in the set of table rows is used as the result.
Every input row should have a 1:1 mapping to a particular row/column pair in the output table,
determined by its values for the `rowKey` and `columnKey`.
In cases where more than one value is identified for the same row/column pair in the output,
the last value encountered in the set of table rows is used as the result.
The output is constructed as follows:
- The set of columns for the new table is the `rowKey` unioned with the group key,
but excluding the columns indicated by the `columnKey` and the `valueColumn`.
- A new column is added to the set of columns for each unique value identified
in the input by the `columnKey` parameter.
- The label of a new column is the concatenation of the values of `columnKey` using `_` as a separator.
If the value is `null`, `"null"` is used.
- A new row is created for each unique value identified in the input by the `rowKey` parameter.
- For each new row, values for group key columns stay the same, while values for new columns are
determined from the input tables by the value in `valueColumn` at the row identified by the
`rowKey` values and the new column's label.
If no value is found, the value is set to `null`.
## Parameters
### rowKey
List of columns used to uniquely identify a row for the output.
_**Data type:** Array of strings_
### columnKey
List of columns used to pivot values onto each row identified by the rowKey.
_**Data type:** Array of strings_
### valueColumn
The single column that contains the value to be moved around the pivot.
_**Data type:** String_
## Examples
### Align fields within each measurement that have the same timestamp
```js
from(bucket:"test")
|> range(start: 1970-01-01T00:00:00.000000000Z)
|> pivot(
rowKey:["_time"],
columnKey: ["_field"],
valueColumn: "_value"
)
```
###### Input
| _time | _value | _measurement | _field |
|:------------------------------:|:------:|:------------:|:------:|
| 1970-01-01T00:00:00.000000001Z | 1.0 | "m1" | "f1" |
| 1970-01-01T00:00:00.000000001Z | 2.0 | "m1" | "f2" |
| 1970-01-01T00:00:00.000000001Z | null | "m1" | "f3" |
| 1970-01-01T00:00:00.000000001Z | 3.0 | "m1" | null |
| 1970-01-01T00:00:00.000000002Z | 4.0 | "m1" | "f1" |
| 1970-01-01T00:00:00.000000002Z | 5.0 | "m1" | "f2" |
| null | 6.0 | "m1" | "f2" |
| 1970-01-01T00:00:00.000000002Z | null | "m1" | "f3" |
| 1970-01-01T00:00:00.000000003Z | null | "m1" | "f1" |
| 1970-01-01T00:00:00.000000003Z | 7.0 | "m1" | null |
| 1970-01-01T00:00:00.000000004Z | 8.0 | "m1" | "f3" |
###### Output
| _time | _measurement | f1 | f2 | f3 | null |
|:------------------------------:|:------------:|:----:|:----:|:----:|:----:|
| 1970-01-01T00:00:00.000000001Z | "m1" | 1.0 | 2.0 | null | 3.0 |
| 1970-01-01T00:00:00.000000002Z | "m1" | 4.0 | 5.0 | null | null |
| null | "m1" | null | 6.0 | null | null |
| 1970-01-01T00:00:00.000000003Z | "m1" | null | null | null | 7.0 |
| 1970-01-01T00:00:00.000000004Z | "m1" | null | null | 8.0 | null |
### Align fields and measurements that have the same timestamp
{{% note %}}
Note the effects of:
- Having null values in some `columnKey` value;
- Having more values for the same `rowKey` and `columnKey` value
(the 11th row overrides the 10th, and so does the 15th with the 14th).
{{% /note %}}
```js
from(bucket:"test")
|> range(start: 1970-01-01T00:00:00.000000000Z)
|> pivot(
rowKey:["_time"],
columnKey: ["_measurement", "_field"],
valueColumn: "_value"
)
```
###### Input
| _time | _value | _measurement | _field |
|:------------------------------:|:------:|:------------:|:------:|
| 1970-01-01T00:00:00.000000001Z | 1.0 | "m1" | "f1" |
| 1970-01-01T00:00:00.000000001Z | 2.0 | "m1" | "f2" |
| 1970-01-01T00:00:00.000000001Z | 3.0 | null | "f3" |
| 1970-01-01T00:00:00.000000001Z | 4.0 | null | null |
| 1970-01-01T00:00:00.000000002Z | 5.0 | "m1" | "f1" |
| 1970-01-01T00:00:00.000000002Z | 6.0 | "m1" | "f2" |
| 1970-01-01T00:00:00.000000002Z | 7.0 | "m1" | "f3" |
| 1970-01-01T00:00:00.000000002Z | 8.0 | null | null |
| null | 9.0 | "m1" | "f3" |
| 1970-01-01T00:00:00.000000003Z | 10.0 | "m1" | null |
| 1970-01-01T00:00:00.000000003Z | 11.0 | "m1" | null |
| 1970-01-01T00:00:00.000000003Z | 12.0 | "m1" | "f3" |
| 1970-01-01T00:00:00.000000003Z | 13.0 | null | null |
| null | 14.0 | "m1" | null |
| null | 15.0 | "m1" | null |
###### Output
| _time | m1_f1 | m1_f2 | null_f3 | null_null | m1_f3 | m1_null |
|:------------------------------:|:-----:|:-----:|:---------:|:---------:|:-----:|:-------:|
| 1970-01-01T00:00:00.000000001Z | 1.0 | 2.0 | 3.0 | 4.0 | null | null |
| 1970-01-01T00:00:00.000000002Z | 5.0 | 6.0 | null | 8.0 | 7.0 | null |
| null | null | null | null | null | 9.0 | 15.0 |
| 1970-01-01T00:00:00.000000003Z | null | null | null | 13.0 | 12.0 | 11.0 |

View File

@ -0,0 +1,70 @@
---
title: range() function
description: The range() function filters records based on time bounds.
menu:
v2_0_ref:
name: range
parent: Transformations
weight: 1
---
The `range()` function filters records based on time bounds.
Each input table's records are filtered to contain only records that exist within the time bounds.
Records with a `null` value for their time are filtered.
Each input table's group key value is modified to fit within the time bounds.
Tables where all records exists outside the time bounds are filtered entirely.
_**Function type:** Transformation_
_**Output data type:* Object_
```js
range(start: -15m, stop: now)
```
## Parameters
### start
Specifies the oldest time to be included in the results.
Relative start times are defined using negative durations.
Negative durations are relative to now.
Absolute start times are defined using timestamps.
_**Data type:** Duration or Timestamp_
### stop
Specifies the exclusive newest time to be included in the results. Defaults to `now`.
Relative stop times are defined using negative durations.
Negative durations are relative to now.
Absolute stop times are defined using timestamps.
_**Data type:** Duration or Timestamp_
## Examples
###### Time range relative to now
```js
from(bucket:"telegraf/autogen")
|> range(start:-12h)
// ...
```
###### Relative time range
```js
from(bucket:"telegraf/autogen")
|> range(start:-12h, stop: -15m)
// ...
```
###### Absolute time range
```js
from(bucket:"telegraf/autogen")
|> range(start:2018-05-22T23:30:00Z, stop: 2018-05-23T00:00:00Z)
// ...
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[WHERE](https://docs.influxdata.com/influxdb/latest/query_language/data_exploration/#the-where-clause)

View File

@ -0,0 +1,57 @@
---
title: rename() function
description: The rename() function renames specified columns in a table.
menu:
v2_0_ref:
name: rename
parent: Transformations
weight: 1
---
The `rename()` function renames specified columns in a table.
If a column is renamed and is part of the group key, the column name in the group key will be updated.
There are two variants:
- one which maps old column names to new column names
- one which takes a mapping function.
_**Function type:** Transformation_
```js
rename(columns: {host: "server", facility: "datacenter"})
// OR
rename(fn: (column) => "{column}_new")
```
## Parameters
### columns
A map of columns to rename and their corresponding new names.
Cannot be used with `fn`.
_**Data type:** Object_
### fn
A function mapping between old and new column names.
Cannot be used with `columns`.
_**Data type:** Function_
## Examples
##### Rename a single column
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> rename(columns: {host: "server"})
```
##### Rename all columns using a function
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> rename(fn: (column) => column + "_new")
```

View File

@ -0,0 +1,24 @@
---
title: Flux selector functions
description: Flux selector functions return one or more records based on function logic.
menu:
v2_0_ref:
parent: Transformations
name: Selectors
weight: 1
---
Flux selector functions return one or more records based on function logic.
The output table is different than the input table, but individual row values are not.
The following selector functions are available:
{{< function-list category="Selectors" menu="v2_0_ref" >}}
### Selectors and aggregates
The following functions can be used as both selectors or aggregates, but they are
categorized as aggregate functions in this documentation:
- [median](/v2.0/reference/flux/functions/transformations/aggregates/median)
- [percentile](/v2.0/reference/flux/functions/transformations/aggregates/percentile)

View File

@ -0,0 +1,60 @@
---
title: bottom() function
description: The bottom() function sorts a table by columns and keeps only the bottom n records.
menu:
v2_0_ref:
name: bottom
parent: Selectors
weight: 1
---
The `bottom()` function sorts a table by columns and keeps only the bottom `n` records.
_**Function type:** Selector_
_**Output data type:** Object_
```js
bottom(n:10, columns: ["_value"])
```
## Parameters
### n
Number of records to return.
_**Data type:** Integer_
### columns
List of columns by which to sort.
Sort precedence is determined by list order (left to right).
Default is `["_value"]`.
_**Data type:** Array of strings_
## Examples
```js
from(bucket:"telegraf/autogen")
|> range(start:-1h)
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used_percent"
)
|> bottom(n:10)
```
## Function definition
```js
// _sortLimit is a helper function, which sorts and limits a table.
_sortLimit = (n, desc, columns=["_value"], tables=<-) =>
tables
|> sort(columns:columns, desc:desc)
|> limit(n:n)
bottom = (n, columns=["_value"], tables=<-) =>
_sortLimit(n:n, columns:columns, desc:false)
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[BOTTOM()](https://docs.influxdata.com/influxdb/latest/query_language/functions/#bottom)

View File

@ -0,0 +1,39 @@
---
title: distinct() function
description: The distinct() function returns the unique values for a given column.
menu:
v2_0_ref:
name: distinct
parent: Selectors
weight: 1
---
The `distinct()` function returns the unique values for a given column.
`null` is considered its own distinct value if it is present.
_**Function type:** Selector_
_**Output data type:** Object_
```js
distinct(column: "host")
```
## Parameters
### column
Column on which to track unique values.
_**Data type:** string_
## Examples
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> filter(fn: (r) => r._measurement == "cpu")
|> distinct(column: "host")
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[DISTINCT()](https://docs.influxdata.com/influxdb/latest/query_language/functions/#distinct)

View File

@ -0,0 +1,34 @@
---
title: first() function
description: The first() function selects the first non-null record from an input table.
menu:
v2_0_ref:
name: first
parent: Selectors
weight: 1
---
The `first()` function selects the first non-null record from an input table.
_**Function type:** Selector_
_**Output data type:** Object_
```js
first()
```
## Examples
```js
from(bucket:"telegraf/autogen")
|> range(start:-1h)
|> filter(fn: (r) =>
r._measurement == "cpu" and
r._field == "usage_system"
)
|> first()
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[FIRST()](https://docs.influxdata.com/influxdb/latest/query_language/functions/#first)

View File

@ -0,0 +1,82 @@
---
title: highestAverage() function
description: The highestAverage() function returns the top 'n' records from all groups using the average of each group.
menu:
v2_0_ref:
name: highestAverage
parent: Selectors
weight: 1
---
The `highestAverage()` function returns the top `n` records from all groups using the average of each group.
_**Function type:** Selector, Aggregate_
```js
highestAverage(
n:10,
columns: ["_value"],
groupColumns: []
)
```
## Parameters
### n
Number of records to return.
_**Data type:** Integer_
### columns
List of columns by which to sort.
Sort precedence is determined by list order (left to right).
Default is `["_value"]`.
_**Data type:** Array of strings_
### groupColumns
The columns on which to group before performing the aggregation.
Default is `[]`.
_**Data type:** Array of strings_
## Examples
```js
from(bucket:"telegraf/autogen")
|> range(start:-1h)
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used_percent"
)
|> highestAverage(n:10, groupColumns: ["host"])
```
## Function definition
```js
// _sortLimit is a helper function, which sorts and limits a table.
_sortLimit = (n, desc, columns=["_value"], tables=<-) =>
tables
|> sort(columns:columns, desc:desc)
|> limit(n:n)
// _highestOrLowest is a helper function which reduces all groups into a single
// group by specific tags and a reducer function. It then selects the highest or
// lowest records based on the columns and the _sortLimit function.
// The default reducer assumes no reducing needs to be performed.
_highestOrLowest = (n, _sortLimit, reducer, columns=["_value"], groupColumns=[], tables=<-) =>
tables
|> group(columns:groupColumns)
|> reducer()
|> group(columns:[])
|> _sortLimit(n:n, columns:columns)
highestAverage = (n, columns=["_value"], groupColumns=[], tables=<-) =>
tables
|> _highestOrLowest(
n:n,
columns:columns,
groupColumns:groupColumns,
reducer: (tables=<-) => tables |> mean(columns:[columns[0]]),
_sortLimit: top,
)
```

View File

@ -0,0 +1,82 @@
---
title: highestCurrent() function
description: The highestCurrent() function returns the top 'n' records from all groups using the last value of each group.
menu:
v2_0_ref:
name: highestCurrent
parent: Selectors
weight: 1
---
The `highestCurrent()` function returns the top `n` records from all groups using the last value of each group.
_**Function type:** Selector, Aggregate_
```js
highestCurrent(
n:10,
columns: ["_value"],
groupColumns: []
)
```
## Parameters
### n
Number of records to return.
_**Data type:** Integer_
### columns
List of columns by which to sort.
Sort precedence is determined by list order (left to right).
Default is `["_value"]`.
_**Data type:** Array of strings_
### groupColumns
The columns on which to group before performing the aggregation.
Default is `[]`.
_**Data type:** Array of strings_
## Examples
```js
from(bucket:"telegraf/autogen")
|> range(start:-1h)
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used_percent"
)
|> highestCurrent(n:10, groupColumns: ["host"])
```
## Function definition
```js
// _sortLimit is a helper function, which sorts and limits a table.
_sortLimit = (n, desc, columns=["_value"], tables=<-) =>
tables
|> sort(columns:columns, desc:desc)
|> limit(n:n)
// _highestOrLowest is a helper function which reduces all groups into a single
// group by specific tags and a reducer function. It then selects the highest or
// lowest records based on the columns and the _sortLimit function.
// The default reducer assumes no reducing needs to be performed.
_highestOrLowest = (n, _sortLimit, reducer, columns=["_value"], groupColumns=[], tables=<-) =>
tables
|> group(columns:groupColumns)
|> reducer()
|> group(columns:[])
|> _sortLimit(n:n, columns:columns)
highestCurrent = (n, columns=["_value"], groupColumns=[], tables=<-) =>
tables
|> _highestOrLowest(
n:n,
columns:columns,
groupColumns:groupColumns,
reducer: (tables=<-) => tables |> last(column:columns[0]),
_sortLimit: top,
)
```

View File

@ -0,0 +1,82 @@
---
title: highestMax() function
description: The highestMax() function returns the top 'n' records from all groups using the maximum of each group.
menu:
v2_0_ref:
name: highestMax
parent: Selectors
weight: 1
---
The `highestMax()` function returns the top `n` records from all groups using the maximum of each group.
_**Function type:** Selector, Aggregate_
```js
highestMax(
n:10,
columns: ["_value"],
groupColumns: []
)
```
## Parameters
### n
Number of records to return.
_**Data type:** Integer_
### columns
List of columns by which to sort.
Sort precedence is determined by list order (left to right).
Default is `["_value"]`.
_**Data type:** Array of strings_
### groupColumns
The columns on which to group before performing the aggregation.
Default is `[]`.
_**Data type:** Array of strings_
## Examples
```js
from(bucket:"telegraf/autogen")
|> range(start:-1h)
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used_percent"
)
|> highestMax(n:10, groupColumns: ["host"])
```
## Function definition
```js
// _sortLimit is a helper function, which sorts and limits a table.
_sortLimit = (n, desc, columns=["_value"], tables=<-) =>
tables
|> sort(columns:columns, desc:desc)
|> limit(n:n)
// _highestOrLowest is a helper function which reduces all groups into a single
// group by specific tags and a reducer function. It then selects the highest or
// lowest records based on the columns and the _sortLimit function.
// The default reducer assumes no reducing needs to be performed.
_highestOrLowest = (n, _sortLimit, reducer, columns=["_value"], groupColumns=[], tables=<-) =>
tables
|> group(columns:groupColumns)
|> reducer()
|> group(columns:[])
|> _sortLimit(n:n, columns:columns)
highestMax = (n, columns=["_value"], groupColumns=[], tables=<-) =>
tables
|> _highestOrLowest(
n:n,
columns:columns,
groupColumns:groupColumns,
reducer: (tables=<-) => tables |> max(column:columns[0]),
_sortLimit: top
)
```

View File

@ -0,0 +1,34 @@
---
title: last() function
description: The last() function selects the last non-null record from an input table.
menu:
v2_0_ref:
name: last
parent: Selectors
weight: 1
---
The `last()` function selects the last non-null record from an input table.
_**Function type:** Selector_
_**Output data type:** Object_
```js
last()
```
## Examples
```js
from(bucket:"telegraf/autogen")
|> range(start:-1h)
|> filter(fn: (r) =>
r._measurement == "cpu" and
r._field == "usage_system"
)
|> last()
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[LAST()](https://docs.influxdata.com/influxdb/latest/query_language/functions/#last)

View File

@ -0,0 +1,83 @@
---
title: lowestAverage() function
description: The lowestAverage() function returns the bottom 'n' records from all groups using the average of each group.
menu:
v2_0_ref:
name: lowestAverage
parent: Selectors
weight: 1
---
The `lowestAverage()` function returns the bottom `n` records from all groups using the average of each group.
_**Function type:** Selector, Aggregate_
```js
lowestAverage(
n:10,
columns: ["_value"],
groupColumns: []
)
```
## Parameters
### n
Number of records to return.
_**Data type:** Integer_
### columns
List of columns by which to sort.
Sort precedence is determined by list order (left to right).
Default is `["_value"]`.
_**Data type:** Array of strings_
### groupColumns
The columns on which to group before performing the aggregation.
Default is `[]`.
_**Data type:** Array of strings_
## Examples
```js
from(bucket:"telegraf/autogen")
|> range(start:-1h)
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used_percent"
)
|> lowestAverage(n:10, groupColumns: ["host"])
```
## Function definition
```js
// _sortLimit is a helper function, which sorts and limits a table.
_sortLimit = (n, desc, columns=["_value"], tables=<-) =>
tables
|> sort(columns:columns, desc:desc)
|> limit(n:n)
// _highestOrLowest is a helper function which reduces all groups into a single
// group by specific tags and a reducer function. It then selects the highest or
// lowest records based on the columns and the _sortLimit function.
// The default reducer assumes no reducing needs to be performed.
_highestOrLowest = (n, _sortLimit, reducer, columns=["_value"], groupColumns=[], tables=<-) =>
tables
|> group(columns:groupColumns)
|> reducer()
|> group(columns:[])
|> _sortLimit(n:n, columns:columns)
lowestAverage = (n, columns=["_value"], groupColumns=[], tables=<-) =>
tables
|> _highestOrLowest(
n:n,
columns:columns,
groupColumns:groupColumns,
reducer: (tables=<-) => tables |> mean(columns:[columns[0]]),
_sortLimit: bottom,
)
```

View File

@ -0,0 +1,82 @@
---
title: lowestCurrent() function
description: The lowestCurrent() function returns the bottom 'n' records from all groups using the last value of each group.
menu:
v2_0_ref:
name: lowestCurrent
parent: Selectors
weight: 1
---
The `lowestCurrent()` function returns the bottom `n` records from all groups using the last value of each group.
_**Function type:** Selector, Aggregate_
```js
lowestCurrent(
n:10,
columns: ["_value"],
groupColumns: []
)
```
## Parameters
### n
Number of records to return.
_**Data type:** Integer_
### columns
List of columns by which to sort.
Sort precedence is determined by list order (left to right).
Default is `["_value"]`.
_**Data type:** Array of strings_
### groupColumns
The columns on which to group before performing the aggregation.
Default is `[]`.
_**Data type:** Array of strings_
## Examples
```js
from(bucket:"telegraf/autogen")
|> range(start:-1h)
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used_percent"
)
|> lowestCurrent(n:10, groupColumns: ["host"])
```
## Function definition
```js
// _sortLimit is a helper function, which sorts and limits a table.
_sortLimit = (n, desc, columns=["_value"], tables=<-) =>
tables
|> sort(columns:columns, desc:desc)
|> limit(n:n)
// _highestOrLowest is a helper function which reduces all groups into a single
// group by specific tags and a reducer function. It then selects the highest or
// lowest records based on the columns and the _sortLimit function.
// The default reducer assumes no reducing needs to be performed.
_highestOrLowest = (n, _sortLimit, reducer, columns=["_value"], groupColumns=[], tables=<-) =>
tables
|> group(columns:groupColumns)
|> reducer()
|> group(columns:[])
|> _sortLimit(n:n, columns:columns)
lowestCurrent = (n, columns=["_value"], groupColumns=[], tables=<-) =>
tables
|> _highestOrLowest(
n:n,
columns:columns,
groupColumns:groupColumns,
reducer: (tables=<-) => tables |> last(column:columns[0]),
_sortLimit: bottom,
)
```

View File

@ -0,0 +1,83 @@
---
title: lowestMin() function
description: The lowestMin() function returns the bottom 'n' records from all groups using the minimum of each group.
menu:
v2_0_ref:
name: lowestMin
parent: Selectors
weight: 1
---
The `lowestMin()` function returns the bottom `n` records from all groups using the minimum of each group.
_**Function type:** Selector, Aggregate_
```js
lowestMin(
n:10,
columns: ["_value"],
groupColumns: []
)
```
## Parameters
### n
Number of records to return.
_**Data type:** Integer_
### columns
List of columns by which to sort.
Sort precedence is determined by list order (left to right).
Default is `["_value"]`.
_**Data type:** Array of strings_
### groupColumns
The columns on which to group before performing the aggregation.
Default is `[]`.
_**Data type:** Array of strings_
## Examples
```js
from(bucket:"telegraf/autogen")
|> range(start:-1h)
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used_percent"
)
|> lowestMin(n:10, groupColumns: ["host"])
```
## Function definition
```js
// _sortLimit is a helper function, which sorts and limits a table.
_sortLimit = (n, desc, columns=["_value"], tables=<-) =>
tables
|> sort(columns:columns, desc:desc)
|> limit(n:n)
// _highestOrLowest is a helper function which reduces all groups into a single
// group by specific tags and a reducer function. It then selects the highest or
// lowest records based on the columns and the _sortLimit function.
// The default reducer assumes no reducing needs to be performed.
_highestOrLowest = (n, _sortLimit, reducer, columns=["_value"], groupColumns=[], tables=<-) =>
tables
|> group(columns:groupColumns)
|> reducer()
|> group(columns:[])
|> _sortLimit(n:n, columns:columns)
lowestMin = (n, columns=["_value"], groupColumns=[], tables=<-) =>
tables
|> _highestOrLowest(
n:n,
columns:columns,
groupColumns:groupColumns,
// TODO(nathanielc): Once max/min support selecting based on multiple columns change this to pass all columns.
reducer: (tables=<-) => tables |> min(column:columns[0]),
_sortLimit: bottom,
)
```

View File

@ -0,0 +1,34 @@
---
title: max() function
description: The max() function selects record with the highest _value from the input table.
menu:
v2_0_ref:
name: max
parent: Selectors
weight: 1
---
The `max()` function selects record with the highest `_value` from the input table.
_**Function type:** Selector_
_**Output data type:** Object_
```js
max()
```
## Examples
```js
from(bucket:"telegraf/autogen")
|> range(start:-1h)
|> filter(fn: (r) =>
r._measurement == "cpu" and
r._field == "usage_system"
)
|> max()
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[MAX()](https://docs.influxdata.com/influxdb/latest/query_language/functions/#max)

View File

@ -0,0 +1,34 @@
---
title: min() function
description: The min() function selects record with the lowest _value from the input table.
menu:
v2_0_ref:
name: min
parent: Selectors
weight: 1
---
The `min()` function selects record with the lowest `_value` from the input table.
_**Function type:** Selector_
_**Output data type:** Object_
```js
min()
```
## Examples
```js
from(bucket:"telegraf/autogen")
|> range(start:-1h)
|> filter(fn: (r) =>
r._measurement == "cpu" and
r._field == "usage_system"
)
|> min()
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[MIN()](https://docs.influxdata.com/influxdb/latest/query_language/functions/#min)

View File

@ -0,0 +1,49 @@
---
title: sample() function
description: The sample() function selects a subset of the records from the input table.
menu:
v2_0_ref:
name: sample
parent: Selectors
weight: 1
---
The `sample()` function selects a subset of the records from the input table.
_**Function type:** Selector_
_**Output data type:** Object_
```js
sample(n:5, pos: -1)
```
## Parameters
### n
Sample every Nth element.
_**Data type:** Integer_
### pos
The position offset from the start of results where sampling begins.
`pos` must be less than `n`.
If `pos` is less than 0, a random offset is used.
Defaults to `-1` (random offset).
_**Data type:** Integer_
## Examples
```js
from(bucket:"telegraf/autogen")
|> range(start:-1d)
|> filter(fn: (r) =>
r._measurement == "cpu" and
r._field == "usage_system"
)
|> sample(n: 5, pos: 1)
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[SAMPLE()](https://docs.influxdata.com/influxdb/latest/query_language/functions/#sample)

View File

@ -0,0 +1,54 @@
---
title: top() function
description: The top() function sorts a table by columns and keeps only the top n records.
menu:
v2_0_ref:
name: top
parent: Selectors
weight: 1
---
The `top()` function sorts a table by columns and keeps only the top `n` records.
_**Function type:** Selector_
_**Output data type:** Object_
```js
top(n:10, columns: ["_value"])
```
## Parameters
### n
Number of records to return.
_**Data type:** Integer_
### columns
List of columns by which to sort.
Sort precedence is determined by list order (left to right).
Default is `["_value"]`.
_**Data type:** Array of strings_
## Examples
```js
from(bucket:"telegraf/autogen")
|> range(start:-1h)
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used_percent"
)
|> top(n:10)
```
## Function definition
```js
// _sortLimit is a helper function, which sorts and limits a table.
_sortLimit = (n, desc, columns=["_value"], tables=<-) =>
tables
|> sort(columns:columns, desc:desc)
|> limit(n:n)
top = (n, columns=["_value"], tables=<-) => _sortLimit(n:n, columns:columns, desc:true)
```

View File

@ -0,0 +1,34 @@
---
title: unique() function
description: The unique() function returns all records containing unique values in a specified column.
menu:
v2_0_ref:
name: unique
parent: Selectors
weight: 1
---
The `unique()` function returns all records containing unique values in a specified column.
_**Function type:** Selector_
_**Output data type:** Object_
```js
unique(column: "_value")
```
## Parameters
### column
The column searched for unique values.
Defaults to `"_value"`.
_**Data type:** String_
## Examples
```js
from("telegraf/autogen")
|> range(start: -15m)
|> filter(fn: (r) => r._measurement == "syslog")
|> unique(column: "message")
```

View File

@ -0,0 +1,38 @@
---
title: set() function
description: The set() function assigns a static value to each record in the input table.
menu:
v2_0_ref:
name: set
parent: Transformations
weight: 1
---
The `set()` function assigns a static value to each record in the input table.
The key may modify an existing column or add a new column to the tables.
If the modified column is part of the group key, the output tables are regrouped as needed.
_**Function type:** Transformation_
_**Output data type:** Object_
```js
set(key: "myKey",value: "myValue")
```
## Parameters
### key
The label of the column to modify or set.
_**Data type:** String_
### value
The string value to set.
_**Data type:** String_
## Examples
```js
from(bucket: "telegraf/autogen")
|> set(key: "host", value: "prod-node-1")
```

View File

@ -0,0 +1,48 @@
---
title: shift() function
description: The shift() function adds a fixed duration to time columns.
menu:
v2_0_ref:
name: shift
parent: Transformations
weight: 1
---
The `shift()` function adds a fixed duration to time columns.
The output table schema is the same as the input table.
If the time is `null`, the time will continue to be `null`.
_**Function type:** Transformation_
_**Output data type:** Object_
```js
shift(shift: 10h, columns: ["_start", "_stop", "_time"])
```
## Parameters
### shift
The amount of time to add to each time value. The shift may be a negative duration.
_**Data type:** Duration_
### columns
The list of all columns to be shifted. Defaults to `["_start", "_stop", "_time"]`.
_**Data type:** Array of strings_
## Examples
###### Shift forward in time
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> shift(shift: 12h)
```
###### Shift backward in time
```js
from(bucket: "telegraf/autogen")
|> range(start: -5m)
|> shift(shift: -12h)
```

View File

@ -0,0 +1,51 @@
---
title: sort() function
description: The sort() function orders the records within each table.
menu:
v2_0_ref:
name: sort
parent: Transformations
weight: 1
---
The `sort()` function orders the records within each table.
One output table is produced for each input table.
The output tables will have the same schema as their corresponding input tables.
_**Function type:** Transformation_
_**Output data type:** Object_
#### Sorting with null values
When sorting, `null` values will always be first.
When `desc: false`, nulls are less than every other value.
When `desc: true`, nulls are greater than every value.
```js
sort(columns: ["_value"], desc: false)
```
## Parameters
### columns
List of columns by which to sort.
Sort precedence is determined by list order (left to right).
Default is `["_value"]`.
_**Data type:** Array of strings_
### desc
Sort results in descending order.
Default is `false`.
_**Data type:** Boolean_
## Examples
```js
from(bucket:"telegraf/autogen")
|> range(start:-12h)
|> filter(fn: (r) =>
r._measurement == "system" and
r._field == "uptime"
)
|> sort(columns:["region", "host", "_value"])
```

View File

@ -0,0 +1,51 @@
---
title: stateCount() function
description: The stateCount() function computes the number of consecutive records in a given state.
menu:
v2_0_ref:
name: stateCount
parent: Transformations
weight: 1
---
The `stateCount()` function computes the number of consecutive records in a given state.
The state is defined via the function `fn`.
For each consecutive point that evaluates as `true`, the state count will be incremented.
When a point evaluates as `false`, the state count is reset.
The state count is added as an additional column to each record.
_**Function type:** Transformation_
_**Output data type:** Integer_
```js
stateCount(fn: (r) => r._field == "state", column: "stateCount")
```
_If the expression generates an error during evaluation, the point is discarded
and does not affect the state count._
## Parameters
### fn
A single argument function that evaluates true or false to identify the state of the record.
Records are passed to the function.
Those that evaluate to `true` increment the state count.
Those that evaluate to `false` reset the state count.
_**Data type:** Function_
### column
The name of the column added to each record that contains the incremented state count.
_**Data type:** String_
## Examples
```js
from("monitor/autogen")
|> range(start: -1h)
|> filter(fn: (r) => r._measurement == "http")
|> stateCount(
fn: (r) => r.http_response_code == "500",
column: "server_error_count"
)
```

View File

@ -0,0 +1,63 @@
---
title: stateDuration() function
description: The stateDuration() function computes the duration of a given state.
menu:
v2_0_ref:
name: stateDuration
parent: Transformations
weight: 1
---
The `stateDuration()` function computes the duration of a given state.
The state is defined via the function `fn`.
For each consecutive point for that evaluates as `true`, the state duration will be
incremented by the duration between points.
When a point evaluates as `false`, the state duration is reset.
The state duration is added as an additional column to each record.
_**Function type:** Transformation_
_**Output data type:** Duration_
{{% note %}}
As the first point in the given state has no previous point, its
state duration will be 0.
{{% /note %}}
```js
stateDuration(fn: (r) => r._measurement == "state", column: "stateDuration", unit: 1s)
```
_If the expression generates an error during evaluation, the point is discarded,
and does not affect the state duration._
## Parameters
### fn
A single argument function that evaluates true or false to identify the state of the record.
Records are passed to the function.
Those that evaluate to `true` increment the state duration.
Those that evaluate to `false` reset the state duration.
_**Data type:** Function_
### column
The name of the column added to each record that contains the state duration.
_**Data type:** String_
### unit
The unit of time in which the state duration is incremented.
For example: `1s`, `1m`, `1h`, etc.
_**Data type:** Duration_
## Examples
```js
from("monitor/autogen")
|> range(start: -1h)
|> filter(fn: (r) => r._measurement == "http")
|> stateDuration(
fn: (r) => r.http_response_code == "500",
column: "server_error_duration"
)
```

View File

@ -0,0 +1,14 @@
---
title: Flux type conversion functions
description: Flux type conversion functions convert columns of the input table into a specific data type.
menu:
v2_0_ref:
parent: Transformations
name: Type conversions
weight: 1
---
Flux type conversion functions convert columns of the input table into a specific data type.
The following type conversion functions are available:
{{< function-list category="Type conversions" menu="v2_0_ref" >}}

View File

@ -0,0 +1,35 @@
---
title: toBool() function
description: The toBool() function converts a value to a boolean.
menu:
v2_0_ref:
name: toBool
parent: Type conversions
weight: 1
---
The `toBool()` function converts a value to a boolean.
_**Function type:** Type conversion_
_**Output data type:** Boolean_
```js
toBool()
```
## Examples
```js
from(bucket: "telegraf")
|> filter(fn:(r) =>
r._measurement == "mem" and
r._field == "used"
)
|> toBool()
```
## Function definition
```js
toBool = (tables=<-) =>
tables
|> map(fn:(r) => bool(v: r._value))
```

View File

@ -0,0 +1,35 @@
---
title: toDuration() function
description: The toDuration() function converts a value to a duration.
menu:
v2_0_ref:
name: toDuration
parent: Type conversions
weight: 1
---
The `toDuration()` function converts a value to a duration.
_**Function type:** Type conversion_
_**Output data type:** Duration_
```js
toDuration()
```
## Examples
```js
from(bucket: "telegraf")
|> filter(fn:(r) =>
r._measurement == "mem" and
r._field == "used"
)
|> toDuration()
```
## Function definition
```js
toDuration = (tables=<-) =>
tables
|> map(fn:(r) => duration(v: r._value))
```

View File

@ -0,0 +1,35 @@
---
title: toFloat() function
description: The toFloat() function converts a value to a float.
menu:
v2_0_ref:
name: toFloat
parent: Type conversions
weight: 1
---
The `toFloat()` function converts a value to a float.
_**Function type:** Type conversion_
_**Output data type:** Float_
```js
toFloat()
```
## Examples
```js
from(bucket: "telegraf")
|> filter(fn:(r) =>
r._measurement == "mem" and
r._field == "used"
)
|> toFloat()
```
## Function definition
```js
toFloat = (tables=<-) =>
tables
|> map(fn:(r) => float(v: r._value))
```

View File

@ -0,0 +1,35 @@
---
title: toInt() function
description: The toInt() function converts a value to an integer.
menu:
v2_0_ref:
name: toInt
parent: Type conversions
weight: 1
---
The `toInt()` function converts a value to an integer.
_**Function type:** Type conversion_
_**Output data type:** Integer_
```js
toInt()
```
## Examples
```js
from(bucket: "telegraf")
|> filter(fn:(r) =>
r._measurement == "mem" and
r._field == "used"
)
|> toInt()
```
## Function definition
```js
toInt = (tables=<-) =>
tables
|> map(fn:(r) => int(v: r._value))
```

View File

@ -0,0 +1,35 @@
---
title: toString() function
description: The toString() function converts a value to a string.
menu:
v2_0_ref:
name: toString
parent: Type conversions
weight: 1
---
The `toString()` function converts a value to a string.
_**Function type:** Type conversion_
_**Output data type:** String_
```js
toString()
```
## Examples
```js
from(bucket: "telegraf")
|> filter(fn:(r) =>
r._measurement == "mem" and
r._field == "used"
)
|> toString()
```
## Function definition
```js
toString = (tables=<-) =>
tables
|> map(fn:(r) => string(v: r._value))
```

View File

@ -0,0 +1,35 @@
---
title: toTime() function
description: The toTime() function converts a value to a time.
menu:
v2_0_ref:
name: toTime
parent: Type conversions
weight: 1
---
The `toTime()` function converts a value to a time.
_**Function type:** Type conversion_
_**Output data type:** Time_
```js
toTime()
```
## Examples
```js
from(bucket: "telegraf")
|> filter(fn:(r) =>
r._measurement == "mem" and
r._field == "used"
)
|> toTime()
```
## Function definition
```js
toTime = (tables=<-) =>
tables
|> map(fn:(r) => time(v:r._value))
```

View File

@ -0,0 +1,35 @@
---
title: toUInt() function
description: The toUInt() function converts a value to an uinteger.
menu:
v2_0_ref:
name: toUInt
parent: Type conversions
weight: 1
---
The `toUInt()` function converts a value to an UInteger.
_**Function type:** Type conversion_
_**Output data type:** UInteger_
```js
toUInt()
```
## Examples
```js
from(bucket: "telegraf")
|> filter(fn:(r) =>
r._measurement == "mem" and
r._field == "used"
)
|> toUInt()
```
## Function definition
```js
toUInt = (tables=<-) =>
tables
|> map(fn:(r) => uint(v:r._value))
```

View File

@ -0,0 +1,52 @@
---
title: union() function
description: The union() function concatenates two or more input streams into a single output stream.
menu:
v2_0_ref:
name: union
parent: Transformations
weight: 1
---
The `union()` function concatenates two or more input streams into a single output stream.
In tables that have identical schemas and group keys, contents of the tables will be concatenated in the output stream.
The output schemas of the `union()` function is the union of all input schemas.
`union()` does not preserve the sort order of the rows within tables.
A sort operation may be added if a specific sort order is needed.
_**Function type:** Transformation_
_**Output data type:** Object_
```js
union(tables: ["table1", "table2"])
```
## Parameters
### tables
Specifies the streams to union together.
There must be at least two streams.
_**Data type:** Array of streams_
## Examples
```js
left = from(bucket: "test")
|> range(start: 2018-05-22T19:53:00Z, stop: 2018-05-22T19:53:50Z)
|> filter(fn: (r) =>
r._field == "usage_guest" or
r._field == "usage_guest_nice"
)
|> drop(columns: ["_start", "_stop"])
right = from(bucket: "test")
|> range(start: 2018-05-22T19:53:50Z, stop: 2018-05-22T19:54:20Z)
|> filter(fn: (r) =>
r._field == "usage_guest" or
r._field == "usage_idle"
)
|> drop(columns: ["_start", "_stop"])
union(tables: [left, right])
```

View File

@ -0,0 +1,118 @@
---
title: window() function
description: The window() function groups records based on a time value.
menu:
v2_0_ref:
name: window
parent: Transformations
weight: 1
---
The `window()` function groups records based on a time value.
New columns are added to uniquely identify each window.
Those columns are added to the group key of the output tables.
A single input record will be placed into zero or more output tables, depending on the specific windowing function.
_**Function type:** Transformation_
_**Output data type:** Object_
```js
window(
every: 5m,
period: 5m,
start: 12h,
timeColumn: "_time",
startColumn: "_start",
stopColumn: "_stop"
)
// OR
window(
intervals: intervals(every: 5m, period: 5m, offset: 12h),
timeColumn: "_time",
startColumn: "_start",
stopColumn: "_stop"
)
```
## Parameters
{{% note %}}
`every`,`period` or `intervals` is required.
{{% /note %}}
### every
Duration of time between windows.
Defaults to `period` value.
_**Data type:** Duration_
### period
Duration of the window.
Period is the length of each interval.
It can be negative, indicating the start and stop boundaries are reversed.
Defaults to `every` value.
_**Data type:** Duration_
### start
The start window time relative to the [`location`](/v2.0/reference/flux/language/options/#location) offset.
It can be negative, indicating that the start goes backwards in time.
The default aligns the window boundaries with `now`.
_**Data type:** Duration_
### intervals
A function that returns an interval generator, a set of intervals used as windows.
_**Data type:** Function_
###### Example interval generator function
```js
intervals(every:1d, period:8h, offset:9h)
```
> When `intervals` is used, `every`, `period`, and `start` cannot be used or need to be set to 0.
### timeColumn
The column containing time.
Defaults to `"_time"`.
_**Data type:** String_
### startColumn
The column containing the window start time.
Defaults to `"_start"`.
_**Data type:** String_
### stopColumn
The column containing the window stop time.
Defaults to `"_stop"`.
_**Data type:** String_
## Examples
#### Window data into 10 minute intervals
```js
from(bucket:"telegraf/autogen")
|> range(start:-12h)
|> window(every:10m)
// ...
```
#### Window data using intervals function
The following windows data into 8 hour intervals starting at 9AM every day.
```js
from(bucket:"telegraf/autogen")
|> range(start:-12h)
|> window(intervals: intervals(every:1d, period:8h, offset:9h))
```
<hr style="margin-top:4rem"/>
##### Related InfluxQL functions and statements:
[GROUP BY time()](https://docs.influxdata.com/influxdb/latest/query_language/data_exploration/#the-group-by-clause)

View File

@ -13,8 +13,8 @@ menu:
Flux contains many preassigned values.
These preassigned values are defined in the source files for the various built-in packages.
## [System built-ins](/flux/v0.x/language/built-ins/system-built-ins)
## [System built-ins](/v2.0/reference/flux/language/built-ins/system-built-ins)
When a built-in value is not expressible in Flux, its value may be defined by the hosting environment.
## [Time constants](/flux/v0.x/language/built-ins/time-constants)
## [Time constants](/v2.0/reference/flux/language/built-ins/time-constants)
When a built-in value is not expressible in Flux, its value may be defined by the hosting environment.

View File

@ -5,7 +5,7 @@ description: >
A package consists of one or more source files.
Each source file is parsed individually and composed into a single package.
aliases:
- /flux/v0.x/language/programs
- /v2.0/reference/flux/language/programs
menu:
v2_0_ref:
parent: Flux language specification

View File

@ -0,0 +1,33 @@
{{ $category := (.Get "category") }}
{{ $menu := (.Get "menu")}}
<ul>
{{ range (index .Site.Menus $menu) }}
{{ if .HasChildren}}
{{ range .Children }}
{{ if eq .Parent $category }}
{{ if not .HasChildren }}
<li><a href="{{ .URL }}">{{ .Name }}</a></li>
{{ end }}
{{ end }}
{{ if .HasChildren}}
{{ range .Children }}
{{ if eq .Parent $category }}
{{ if not .HasChildren }}
<li><a href="{{ .URL }}">{{ .Name }}</a></li>
{{ end }}
{{ end }}
{{ if .HasChildren}}
{{ range .Children }}
{{ if eq .Parent $category }}
{{ if not .HasChildren }}
<li><a href="{{ .URL }}">{{ .Name }}</a></li>
{{ end }}
{{ end }}
{{ end }}
{{ end }}
{{ end }}
{{ end }}
{{ end }}
{{ end }}
{{ end }}
</ul>