commit
3eb71e39ce
|
@ -509,6 +509,38 @@ The following options are available:
|
|||
{{< ui-message color="green" text="The message displayed in the notification.">}}
|
||||
```
|
||||
|
||||
### Flexbox-formatted content blocks
|
||||
CSS Flexbox formatting lets you create columns in article content that adjust and
|
||||
flow based on the viewable width.
|
||||
In article content, this helps if you have narrow tables that could be displayed
|
||||
side-by-side, rather than stacked vertically.
|
||||
Use the `{{< flex >}}` shortcode to create the Flexbox wrapper.
|
||||
Use the `{{% flex-content %}}` shortcode to identify each column content block.
|
||||
|
||||
```md
|
||||
{{< flex >}}
|
||||
{{% flex-content %}}
|
||||
Column 1
|
||||
{{% /flex-content %}}
|
||||
{{% flex-content %}}
|
||||
Column 2
|
||||
{{% /flex-content %}}
|
||||
{{< /flex >}}
|
||||
```
|
||||
|
||||
`{{% flex-content %}}` has an optional width argument that determines the maximum
|
||||
width of the column.
|
||||
|
||||
```md
|
||||
{{% flex-content "half" %}}
|
||||
```
|
||||
|
||||
The following options are available:
|
||||
|
||||
- half _(Default)_
|
||||
- third
|
||||
- quarter
|
||||
|
||||
### Reference content
|
||||
The InfluxDB documentation is "task-based," meaning content primarily focuses on
|
||||
what a user is **doing**, not what they are **using**.
|
||||
|
|
|
@ -104,6 +104,7 @@
|
|||
"article/cloud",
|
||||
"article/enterprise",
|
||||
"article/feedback",
|
||||
"article/flex",
|
||||
"article/lists",
|
||||
"article/note",
|
||||
"article/pagination-btns",
|
||||
|
|
|
@ -0,0 +1,24 @@
|
|||
/////////////////////////// Flex Content Blocks ///////////////////////////
|
||||
|
||||
.flex-wrapper {
|
||||
display: flex;
|
||||
flex-wrap: wrap;
|
||||
}
|
||||
|
||||
.flex-container {
|
||||
margin-right: 1rem;
|
||||
&.half { width: calc(50% - 1rem); }
|
||||
&.third { width: calc(33.33% - 1rem); }
|
||||
&.quarter { width: calc(25% - 1rem); }
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
///////////////////////////////// MEDIA QUERIES ////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@include media(small) {
|
||||
.flex-container {
|
||||
&.half, &.third { width: calc(100% - 1rem); }
|
||||
&.quarter { width: calc(50% - 1rem); }
|
||||
}
|
||||
}
|
|
@ -0,0 +1,47 @@
|
|||
---
|
||||
title: Common Flux queries
|
||||
description: >
|
||||
placeholder
|
||||
weight: 103
|
||||
menu:
|
||||
v2_0:
|
||||
parent: Query data
|
||||
name: Common queries
|
||||
v2.0/tags: [query]
|
||||
---
|
||||
|
||||
|
||||
{{% note %}}
|
||||
#### Example data variable
|
||||
Many of the examples provided in the following guides use a `data` variable,
|
||||
which represents a basic query that filters data by measurement and field.
|
||||
`data` is defined as:
|
||||
|
||||
```js
|
||||
data = from(bucket: "example-bucket")
|
||||
|> range(start: -1h)
|
||||
|> filter(fn: (r) =>
|
||||
r._measurement == "example-measurement" and
|
||||
r._field == "example-field"
|
||||
)
|
||||
```
|
||||
{{% /note %}}
|
||||
|
||||
{{< children >}}
|
||||
|
||||
---
|
||||
|
||||
- [x] SELECT-like commands
|
||||
- [x] Median
|
||||
- [x] Percentile
|
||||
- [ ] Cumulative Sum
|
||||
- [ ] Moving Average
|
||||
- [ ] Increase
|
||||
- [ ] Rate
|
||||
- [ ] Delta
|
||||
- [ ] Window
|
||||
- [ ] First/Last
|
||||
- [ ] Histogram
|
||||
- [ ] Gap filling
|
||||
- [ ] Last observation carried forward
|
||||
- [ ] Last point
|
|
@ -0,0 +1,67 @@
|
|||
---
|
||||
title: Query cumulative sum
|
||||
seotitle: Query cumulative sum in Flux
|
||||
list_title: Cumulative sum
|
||||
description: >
|
||||
Use the `cumulativeSum()` function to calculate a running total of values.
|
||||
weight: 204
|
||||
menu:
|
||||
v2_0:
|
||||
parent: Common queries
|
||||
name: Cumulative sum
|
||||
v2.0/tags: [query, cumulative sum]
|
||||
---
|
||||
|
||||
Use the [`cumulativeSum()` function](/v2.0/reference/flux/stdlib/built-in/transformations/cumulativesum/)
|
||||
to calculate a running total of values.
|
||||
`cumulativeSum` sums the values of subsequent records and returns each row updated with the summed total.
|
||||
|
||||
{{< flex >}}
|
||||
{{% flex-content "half" %}}
|
||||
**Given the following input table:**
|
||||
|
||||
| _time | _value |
|
||||
| ----- |:------:|
|
||||
| 0001 | 1 |
|
||||
| 0002 | 2 |
|
||||
| 0003 | 1 |
|
||||
| 0004 | 3 |
|
||||
{{% /flex-content %}}
|
||||
{{% flex-content "half" %}}
|
||||
**`cumulativeSum()` returns:**
|
||||
|
||||
| _time | _value |
|
||||
| ----- |:------:|
|
||||
| 0001 | 1 |
|
||||
| 0002 | 3 |
|
||||
| 0003 | 4 |
|
||||
| 0004 | 7 |
|
||||
{{% /flex-content %}}
|
||||
{{< /flex >}}
|
||||
|
||||
{{% note %}}
|
||||
The examples below use the [example data variable](/v2.0/query-data/common-queries/#example-data-variable).
|
||||
{{% /note %}}
|
||||
|
||||
##### Calculate the running total of values
|
||||
```js
|
||||
data
|
||||
|> cumulativeSum()
|
||||
```
|
||||
|
||||
## Use cumulativeSum() with aggregateWindow()
|
||||
[`aggregateWindow()`](/v2.0/reference/flux/stdlib/built-in/transformations/aggregates/aggregatewindow/)
|
||||
segments data into windows of time, aggregates data in each window into a single
|
||||
point, then removes the time-based segmentation.
|
||||
It is primarily used to [downsample data](/v2.0/process-data/common-tasks/downsample-data/).
|
||||
|
||||
`aggregateWindow()` expects an aggregate function that returns a single row for each time window.
|
||||
To use `cumulativeSum()` with `aggregateWindow`, use `sum` in `aggregateWindow()`,
|
||||
then calculate the running total of the aggregate values with `cumulativeSum()`.
|
||||
|
||||
<!-- -->
|
||||
```js
|
||||
data
|
||||
|> aggregateWindow(every: 5m, fn: sum)
|
||||
|> cumulativeSum()
|
||||
```
|
|
@ -0,0 +1,147 @@
|
|||
---
|
||||
title: Query median values
|
||||
seotitle: Query median values in Flux
|
||||
list_title: Median
|
||||
description: >
|
||||
Use the `median()` function to return a value representing the `0.5` quantile
|
||||
(50th percentile) or median of input data.
|
||||
weight: 202
|
||||
menu:
|
||||
v2_0:
|
||||
parent: Common queries
|
||||
name: Median
|
||||
v2.0/tags: [query, median]
|
||||
related:
|
||||
- /v2.0/query-data/common-queries/percentile-quantile/
|
||||
---
|
||||
|
||||
Use the [`median()` function](/v2.0/reference/flux/stdlib/built-in/transformations/aggregates/median/)
|
||||
to return a value representing the `0.5` quantile (50th percentile) or median of input data.
|
||||
|
||||
## Select a method for calculating the median
|
||||
Select one of the following methods to calculate the median:
|
||||
|
||||
- [estimate_tdigest](#estimate-tdigest)
|
||||
- [exact_mean](#exact-mean)
|
||||
- [exact_selector](#exact-selector)
|
||||
|
||||
### estimate_tdigest
|
||||
**(Default)** An aggregate method that uses a [t-digest data structure](https://github.com/tdunning/t-digest)
|
||||
to compute an accurate `0.5` quantile estimate on large data sources.
|
||||
Output tables consist of a single row containing the calculated median.
|
||||
|
||||
{{< flex >}}
|
||||
{{% flex-content %}}
|
||||
**Given the following input table:**
|
||||
|
||||
| _time | _value |
|
||||
| ----- |:------:|
|
||||
| 0001 | 1.0 |
|
||||
| 0002 | 1.0 |
|
||||
| 0003 | 2.0 |
|
||||
| 0004 | 3.0 |
|
||||
{{% /flex-content %}}
|
||||
{{% flex-content %}}
|
||||
**`estimate_tdigest` returns:**
|
||||
|
||||
| _value |
|
||||
|:------:|
|
||||
| 1.5 |
|
||||
{{% /flex-content %}}
|
||||
{{< /flex >}}
|
||||
|
||||
### exact_mean
|
||||
An aggregate method that takes the average of the two points closest to the `0.5` quantile value.
|
||||
Output tables consist of a single row containing the calculated median.
|
||||
|
||||
{{< flex >}}
|
||||
{{% flex-content %}}
|
||||
**Given the following input table:**
|
||||
|
||||
| _time | _value |
|
||||
| ----- |:------:|
|
||||
| 0001 | 1.0 |
|
||||
| 0002 | 1.0 |
|
||||
| 0003 | 2.0 |
|
||||
| 0004 | 3.0 |
|
||||
{{% /flex-content %}}
|
||||
{{% flex-content %}}
|
||||
**`exact_mean` returns:**
|
||||
|
||||
| _value |
|
||||
|:------:|
|
||||
| 1.5 |
|
||||
{{% /flex-content %}}
|
||||
{{< /flex >}}
|
||||
|
||||
### exact_selector
|
||||
A selector method that returns the data point for which at least 50% of points are less than.
|
||||
Output tables consist of a single row containing the calculated median.
|
||||
|
||||
{{< flex >}}
|
||||
{{% flex-content %}}
|
||||
**Given the following input table:**
|
||||
|
||||
| _time | _value |
|
||||
| ----- |:------:|
|
||||
| 0001 | 1.0 |
|
||||
| 0002 | 1.0 |
|
||||
| 0003 | 2.0 |
|
||||
| 0004 | 3.0 |
|
||||
{{% /flex-content %}}
|
||||
{{% flex-content %}}
|
||||
**`exact_selector` returns:**
|
||||
|
||||
| _time | _value |
|
||||
| ----- |:------:|
|
||||
| 0002 | 1.0 |
|
||||
{{% /flex-content %}}
|
||||
{{< /flex >}}
|
||||
|
||||
{{% note %}}
|
||||
The examples below use the [example data variable](/v2.0/query-data/common-queries/#example-data-variable).
|
||||
{{% /note %}}
|
||||
|
||||
## Find the value that represents the median
|
||||
Use the default method, `"estimate_tdigest"`, to return all rows in a table that
|
||||
contain values in the 50th percentile of data in the table.
|
||||
|
||||
```js
|
||||
data
|
||||
|> median()
|
||||
```
|
||||
|
||||
## Find the average of values closest to the median
|
||||
Use the `exact_mean` method to return a single row per input table containing the
|
||||
average of the two values closest to the mathematical median of data in the table.
|
||||
|
||||
```js
|
||||
data
|
||||
|> median(method: "exact_mean")
|
||||
```
|
||||
|
||||
## Find the point with the median value
|
||||
Use the `exact_selector` method to return a single row per input table containing the
|
||||
value that 50% of values in the table are less than.
|
||||
|
||||
```js
|
||||
data
|
||||
|> median(method: "exact_selector")
|
||||
```
|
||||
|
||||
## Use median() with aggregateWindow()
|
||||
[`aggregateWindow()`](/v2.0/reference/flux/stdlib/built-in/transformations/aggregates/aggregatewindow/)
|
||||
segments data into windows of time, aggregates data in each window into a single
|
||||
point, and then removes the time-based segmentation.
|
||||
It is primarily used to [downsample data](/v2.0/process-data/common-tasks/downsample-data/).
|
||||
|
||||
To specify the [median calculation method](#median-calculation-methods) in `aggregateWindow()`, use the
|
||||
[full function syntax](/v2.0/reference/flux/stdlib/built-in/transformations/aggregates/aggregatewindow/#specify-parameters-of-the-aggregate-function):
|
||||
|
||||
```js
|
||||
data
|
||||
|> aggregateWindow(
|
||||
every: 5m,
|
||||
fn: (tables=<-, column) => tables |> median(method: "exact_selector")
|
||||
)
|
||||
```
|
|
@ -0,0 +1,163 @@
|
|||
---
|
||||
title: Query percentile and quantile values
|
||||
seotitle: Query percentile and quantile values in Flux
|
||||
list_title: Percentile & quantile
|
||||
description: >
|
||||
Use the `quantile()` function to return all values within the `q` quantile or
|
||||
percentile of input data.
|
||||
weight: 203
|
||||
menu:
|
||||
v2_0:
|
||||
parent: Common queries
|
||||
name: Percentile & quantile
|
||||
v2.0/tags: [query, percentile, quantile]
|
||||
related:
|
||||
- /v2.0/query-data/common-queries/query-median/
|
||||
---
|
||||
|
||||
Use the [`quantile()` function](/v2.0/reference/flux/stdlib/built-in/transformations/aggregates/quantile/)
|
||||
to return a value representing the `q` quantile or percentile of input data.
|
||||
|
||||
## Percentile versus quantile
|
||||
Percentiles and quantiles are very similar, differing only in the number used to calculate return values.
|
||||
A percentile is calculated using numbers between `0` and `100`.
|
||||
A quantile is calculated using numbers between `0.0` and `1.0`.
|
||||
For example, the **`0.5` quantile** is the same as the **50th percentile**.
|
||||
|
||||
## Select a method for calculating the quantile
|
||||
Select one of the following methods to calculate the quantile:
|
||||
|
||||
- [estimate_tdigest](#estimate-tdigest)
|
||||
- [exact_mean](#exact-mean)
|
||||
- [exact_selector](#exact-selector)
|
||||
|
||||
### estimate_tdigest
|
||||
**(Default)** An aggregate method that uses a [t-digest data structure](https://github.com/tdunning/t-digest)
|
||||
to compute a quantile estimate on large data sources.
|
||||
Output tables consist of a single row containing the calculated quantile.
|
||||
|
||||
If calculating the `0.5` quantile or 50th percentile:
|
||||
|
||||
{{< flex >}}
|
||||
{{% flex-content %}}
|
||||
**Given the following input table:**
|
||||
|
||||
| _time | _value |
|
||||
| ----- |:------:|
|
||||
| 0001 | 1.0 |
|
||||
| 0002 | 1.0 |
|
||||
| 0003 | 2.0 |
|
||||
| 0004 | 3.0 |
|
||||
{{% /flex-content %}}
|
||||
{{% flex-content %}}
|
||||
**`estimate_tdigest` returns:**
|
||||
|
||||
| _value |
|
||||
|:------:|
|
||||
| 1.5 |
|
||||
{{% /flex-content %}}
|
||||
{{< /flex >}}
|
||||
|
||||
### exact_mean
|
||||
An aggregate method that takes the average of the two points closest to the quantile value.
|
||||
Output tables consist of a single row containing the calculated quantile.
|
||||
|
||||
If calculating the `0.5` quantile or 50th percentile:
|
||||
|
||||
{{< flex >}}
|
||||
{{% flex-content %}}
|
||||
**Given the following input table:**
|
||||
|
||||
| _time | _value |
|
||||
| ----- |:------:|
|
||||
| 0001 | 1.0 |
|
||||
| 0002 | 1.0 |
|
||||
| 0003 | 2.0 |
|
||||
| 0004 | 3.0 |
|
||||
{{% /flex-content %}}
|
||||
{{% flex-content %}}
|
||||
**`exact_mean` returns:**
|
||||
|
||||
| _value |
|
||||
|:------:|
|
||||
| 1.5 |
|
||||
{{% /flex-content %}}
|
||||
{{< /flex >}}
|
||||
|
||||
### exact_selector
|
||||
A selector method that returns the data point for which at least `q` points are less than.
|
||||
Output tables consist of a single row containing the calculated quantile.
|
||||
|
||||
If calculating the `0.5` quantile or 50th percentile:
|
||||
|
||||
{{< flex >}}
|
||||
{{% flex-content %}}
|
||||
**Given the following input table:**
|
||||
|
||||
| _time | _value |
|
||||
| ----- |:------:|
|
||||
| 0001 | 1.0 |
|
||||
| 0002 | 1.0 |
|
||||
| 0003 | 2.0 |
|
||||
| 0004 | 3.0 |
|
||||
{{% /flex-content %}}
|
||||
{{% flex-content %}}
|
||||
**`exact_selector` returns:**
|
||||
|
||||
| _time | _value |
|
||||
| ----- |:------:|
|
||||
| 0002 | 1.0 |
|
||||
{{% /flex-content %}}
|
||||
{{< /flex >}}
|
||||
|
||||
{{% note %}}
|
||||
The examples below use the [example data variable](/v2.0/query-data/common-queries/#example-data-variable).
|
||||
{{% /note %}}
|
||||
|
||||
## Find the value representing the 99th percentile
|
||||
Use the default method, `"estimate_tdigest"`, to return all rows in a table that
|
||||
contain values in the 99th percentile of data in the table.
|
||||
|
||||
```js
|
||||
data
|
||||
|> quantile(q: 0.99)
|
||||
```
|
||||
|
||||
## Find the average of values closest to the quantile
|
||||
Use the `exact_mean` method to return a single row per input table containing the
|
||||
average of the two values closest to the mathematical quantile of data in the table.
|
||||
For example, to calculate the `0.99` quantile:
|
||||
|
||||
```js
|
||||
data
|
||||
|> quantile(q: 0.99, method: "exact_mean")
|
||||
```
|
||||
|
||||
## Find the point with the quantile value
|
||||
Use the `exact_selector` method to return a single row per input table containing the
|
||||
value that `q * 100`% of values in the table are less than.
|
||||
For example, to calculate the `0.99` quantile:
|
||||
|
||||
```js
|
||||
data
|
||||
|> quantile(q: 0.99, method: "exact_selector")
|
||||
```
|
||||
|
||||
## Use quantile() with aggregateWindow()
|
||||
[`aggregateWindow()`](/v2.0/reference/flux/stdlib/built-in/transformations/aggregates/aggregatewindow/)
|
||||
segments data into windows of time, aggregates data in each window into a single
|
||||
point, and then removes the time-based segmentation.
|
||||
It is primarily used to [downsample data](/v2.0/process-data/common-tasks/downsample-data/).
|
||||
|
||||
To specify the [quantile calculation method](#quantile-calculation-methods) in
|
||||
`aggregateWindow()`, use the [full function syntax](/v2.0/reference/flux/stdlib/built-in/transformations/aggregates/aggregatewindow/#specify-parameters-of-the-aggregate-function):
|
||||
|
||||
```js
|
||||
data
|
||||
|> aggregateWindow(
|
||||
every: 5m,
|
||||
fn: (tables=<-, column) =>
|
||||
tables
|
||||
|> quantile(q: 0.99, method: "exact_selector")
|
||||
)
|
||||
```
|
|
@ -0,0 +1,67 @@
|
|||
---
|
||||
title: Query fields and tags
|
||||
seotitle: Query fields and tags in InfluxDB using Flux
|
||||
description: >
|
||||
Use the `filter()` function to query data based on fields, tags, or any other column value.
|
||||
`filter()` performs operations similar to the `SELECT` statement and the `WHERE`
|
||||
clause in InfluxQL and other SQL-like query languages.
|
||||
weight: 201
|
||||
menu:
|
||||
v2_0:
|
||||
parent: Common queries
|
||||
v2.0/tags: [query, select, where]
|
||||
---
|
||||
|
||||
Use the [`filter()` function](/v2.0/reference/flux/stdlib/built-in/transformations/filter/)
|
||||
to query data based on fields, tags, or any other column value.
|
||||
`filter()` performs operations similar to the `SELECT` statement and the `WHERE`
|
||||
clause in InfluxQL and other SQL-like query languages.
|
||||
|
||||
## The filter() function
|
||||
`filter()` has an `fn` parameter that expects a [predicate function](/v2.0/reference/glossary/#predicate-function),
|
||||
an anonymous function comprised of one or more [predicate expressions](/v2.0/reference/glossary/#predicate-expression).
|
||||
The predicate function evaluates each input row.
|
||||
Rows that evaluate to `true` are **included** in the output data.
|
||||
Rows that evaluate to `false` are **excluded** from the output data.
|
||||
|
||||
```js
|
||||
// ...
|
||||
|> filter(fn: (r) => r._measurement == "example-measurement" )
|
||||
```
|
||||
|
||||
The `fn` predicate function requires an `r` argument, which represents each row
|
||||
as `filter()` iterates over input data.
|
||||
Key-value pairs in the row object represent columns and their values.
|
||||
Use **dot notation** or **bracket notation** to reference specific column values in the predicate function.
|
||||
Use [logical operators](/v2.0/reference/flux/language/operators/#logical-operators)
|
||||
to chain multiple predicate expressions together.
|
||||
|
||||
```js
|
||||
// Row object
|
||||
r = {foo: "bar", baz: "quz"}
|
||||
|
||||
// Example predicate function
|
||||
(r) => r.foo == "bar" and r["baz"] == "quz"
|
||||
|
||||
// Evaluation results
|
||||
(r) => true and true
|
||||
```
|
||||
|
||||
## Filter by fields and tags
|
||||
The combination of [`from()`](/v2.0/reference/flux/stdlib/built-in/inputs/from),
|
||||
[`range()`](/v2.0/reference/flux/stdlib/built-in/transformations/range),
|
||||
and `filter()` represent the most basic Flux query:
|
||||
|
||||
1. Use `from()` to define your [bucket](/v2.0/reference/glossary/#bucket).
|
||||
2. Use `range()` to limit query results by time.
|
||||
3. Use `filter()` to identify what rows of data to output.
|
||||
|
||||
```js
|
||||
from(bucket: "example-bucket")
|
||||
|> range(start: -1h)
|
||||
|> filter(fn: (r) =>
|
||||
r._measurement == "example-measurement" and
|
||||
r._field == "example-field" and
|
||||
r.tag == "example-tag"
|
||||
)
|
||||
```
|
|
@ -708,6 +708,15 @@ A predicate expression compares two values and returns `true` or `false` based o
|
|||
the relationship between the two values.
|
||||
A predicate expression is comprised of a left operand, a comparison operator, and a right operand.
|
||||
|
||||
### predicate function
|
||||
A Flux predicate function is an anonymous function that returns `true` or `false`
|
||||
based on one or more [predicate expressions](#predicate-expression).
|
||||
|
||||
###### Example predicate function
|
||||
```js
|
||||
(r) => r.foo == "bar" and r.baz != "quz"
|
||||
```
|
||||
|
||||
### process
|
||||
|
||||
A set of predetermined rules.
|
||||
|
|
|
@ -54,7 +54,7 @@ List all unique tag values for a specific tag in a specified bucket.
|
|||
The example below lists all unique values of the `host` tag.
|
||||
|
||||
_**Flux package:** [InfluxDB v1](/v2.0/reference/flux/stdlib/influxdb-v1/)_
|
||||
_**Flux functions:** [v1.measurements()](/v2.0/reference/flux/stdlib/influxdb-v1/measurements/)_
|
||||
_**Flux functions:** [v1.tagValues()](/v2.0/reference/flux/stdlib/influxdb-v1/tagvalues/)_
|
||||
|
||||
```js
|
||||
import "influxdata/influxdb/v1"
|
||||
|
|
|
@ -0,0 +1,5 @@
|
|||
{{ $width := .Get 0 | default "half" }}
|
||||
{{ $_hugo_config := `{ "version": 1 }` }}
|
||||
<div class="flex-container {{ $width }}">
|
||||
{{ .Inner }}
|
||||
</div>
|
|
@ -0,0 +1,4 @@
|
|||
{{ $_hugo_config := `{ "version": 1 }` }}
|
||||
<div class="flex-wrapper">
|
||||
{{ .Inner }}
|
||||
</div>
|
Loading…
Reference in New Issue