Merge pull request #320 from influxdata/query/sql-guide

Query SQL guide with sample data
pull/351/head
Scott Anderson 2019-07-23 11:24:10 -06:00 committed by GitHub
commit 28c41bdcd4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 1393 additions and 6 deletions

View File

@ -56,6 +56,7 @@ pre {
padding: 0;
font-size: .95rem;
line-height: 1.5rem;
white-space: pre-wrap;
}
}

View File

@ -6,7 +6,7 @@ menu:
v2_0:
name: Create histograms
parent: How-to guides
weight: 207
weight: 208
---

View File

@ -0,0 +1,217 @@
---
title: Query SQL data sources
seotitle: Query SQL data sources with InfluxDB
description: >
The Flux `sql` package provides functions for working with SQL data sources.
Use `sql.from()` to query SQL databases like PostgreSQL and MySQL
v2.0/tags: [query, flux, sql]
menu:
v2_0:
parent: How-to guides
weight: 207
---
The [Flux](/v2.0/reference/flux) `sql` package provides functions for working with SQL data sources.
[`sql.from()`](/v2.0/reference/flux/functions/sql/from/) lets you query SQL data sources
like [PostgreSQL](https://www.postgresql.org/) and [MySQL](https://www.mysql.com/)
and use the results with InfluxDB dashboards, tasks, and other operations.
- [Query a SQL data source](#query-a-sql-data-source)
- [Join SQL data with data in InfluxDB](#join-sql-data-with-data-in-influxdb)
- [Use SQL results to populate dashboard variables](#use-sql-results-to-populate-dashboard-variables)
- [Sample sensor data](#sample-sensor-data)
## Query a SQL data source
To query a SQL data source:
1. Import the `sql` package in your Flux query
2. Use the `sql.from()` function to specify the driver, data source name (DSN),
and query used to query data from your SQL data source:
{{< code-tabs-wrapper >}}
{{% code-tabs %}}
[PostgreSQL](#)
[MySQL](#)
{{% /code-tabs %}}
{{% code-tab-content %}}
```js
import "sql"
sql.from(
driverName: "postgres",
dataSourceName: "postgresql://user:password@localhost",
query: "SELECT * FROM example_table"
)
```
{{% /code-tab-content %}}
{{% code-tab-content %}}
```js
import "sql"
sql.from(
driverName: "mysql",
dataSourceName: "user:password@tcp(localhost:3306)/db",
query: "SELECT * FROM example_table"
)
```
{{% /code-tab-content %}}
{{< /code-tabs-wrapper >}}
_See the [`sql.from()` documentation](/v2.0/reference/flux/functions/sql/from/) for
information about required function parameters._
## Join SQL data with data in InfluxDB
One of the primary benefits of querying SQL data sources from InfluxDB
is the ability to enrich query results with data stored outside of InfluxDB.
Using the [air sensor sample data](#sample-sensor-data) below, the following query
joins air sensor metrics stored in InfluxDB with sensor information stored in PostgreSQL.
The joined data lets you query and filter results based on sensor information
that isn't stored in InfluxDB.
```js
// Import the "sql" package
import "sql"
// Query data from PostgreSQL
sensorInfo = sql.from(
driverName: "postgres",
dataSourceName: "postgresql://localhost?sslmode=disable",
query: "SELECT * FROM sensors"
)
// Query data from InfluxDB
sensorMetrics = from(bucket: "example-bucket")
|> range(start: -1h)
|> filter(fn: (r) => r._measurement == "airSensors")
// Join InfluxDB query results with PostgreSQL query results
join(tables: {metric: sensorMetrics, info: sensorInfo}, on: ["sensor_id"])
```
## Use SQL results to populate dashboard variables
Use `sql.from()` to [create dashboard variables](/v2.0/visualize-data/variables/create-variable/)
from SQL query results.
The following example uses the [air sensor sample data](#sample-data) below to
create a variable that lets you select the location of a sensor.
```js
import "sql"
sql.from(
driverName: "postgres",
dataSourceName: "postgresql://localhost?sslmode=disable",
query: "SELECT * FROM sensors"
)
|> rename(columns: {location: "_value"})
|> keep(columns: ["_value"])
```
Use the variable to manipulate queries in your dashboards.
{{< img-hd src="/img/2-0-sql-dashboard-variable.png" alt="Dashboard variable from SQL query results" />}}
---
## Sample sensor data
The [sample data generator](#download-and-run-the-sample-data-generator) and
[sample sensor information](#import-the-sample-sensor-information) simulate a
group of sensors that measure temperature, humidity, and carbon monoxide
in rooms throughout a building.
Each collected data point is stored in InfluxDB with a `sensor_id` tag that identifies
the specific sensor it came from.
Sample sensor information is stored in PostgreSQL.
**Sample data includes:**
- Simulated data collected from each sensor and stored in the `airSensors` measurement in **InfluxDB**:
- temperature
- humidity
- co
- Information about each sensor stored in the `sensors` table in **PostgreSQL**:
- sensor_id
- location
- model_number
- last_inspected
### Import and generate sample sensor data
#### Download and run the sample data generator
`air-sensor-data.rb` is a script that generates air sensor data and stores the data in InfluxDB.
To use `air-sensor-data.rb`:
1. [Create a bucket](/v2.0/organizations/buckets/create-bucket/) to store the data.
2. Download the sample data generator. _This tool requires [Ruby](https://www.ruby-lang.org/en/)._
<a class="btn download" href="/downloads/air-sensor-data.rb" download>Download Air Sensor Generator</a>
3. Give `air-sensor-data.rb` executable permissions:
```
chmod +x air-sensor-data.rb
```
4. Start the generator. Specify your organization, bucket, and authorization token.
_For information about retrieving your token, see [View tokens](/v2.0/security/tokens/view-tokens/)._
```
./air-sensor-data.rb -o your-org -b your-bucket -t YOURAUTHTOKEN
```
The generator begins to write data to InfluxDB and will continue until stopped.
Use `ctrl-c` to stop the generator.
_**Note:** Use the `--help` flag to view other configuration options._
5. [Query your target bucket](v2.0/query-data/execute-queries/) to ensure the
generated data is writing successfully.
The generator doesn't catch errors from write requests, so it will continue running
even if data is not writing to InfluxDB successfully.
```
from(bucket: "example-bucket")
|> range(start: -1m)
|> filter(fn: (r) => r._measurement == "airSensors")
```
#### Import the sample sensor information
1. [Download and install PostgreSQL](https://www.postgresql.org/download/).
2. Download the sample sensor information CSV.
<a class="btn download" href="/downloads/sample-sensor-info.csv" download>Download Sample Data</a>
3. Use a PostgreSQL client (`psql` or a GUI) to create the `sensors` table:
```
CREATE TABLE sensors (
sensor_id character varying(50),
location character varying(50),
model_number character varying(50),
last_inspected date
);
```
4. Import the downloaded CSV sample data.
_Update the `FROM` file path to the path of the downloaded CSV sample data._
```
COPY sensors(sensor_id,location,model_number,last_inspected)
FROM '/path/to/sample-sensor-info.csv' DELIMITER ',' CSV HEADER;
```
5. Query the table to ensure the data was imported correctly:
```
SELECT * FROM sensors;
```
#### Import the sample data dashboard
Download and import the Air Sensors dashboard to visualize the generated data:
<a class="btn download" href="/downloads/air_sensors_dashboard.json" download>Download Air Sensors dashboard</a>
_For information about importing a dashboard, see [Create a dashboard](/v2.0/visualize-data/dashboards/create-dashboard/#create-a-new-dashboard)._

View File

@ -60,11 +60,11 @@ _**Data type:** String_
```js
import "sql"
sql.from(
driverName: "mysql",
dataSourceName: "user:password@tcp(localhost:3306)/db",
query:"SELECT * FROM ExampleTable"
)
sql.from(
driverName: "mysql",
dataSourceName: "user:password@tcp(localhost:3306)/db",
query:"SELECT * FROM ExampleTable"
)
```
### Query a Postgres database

View File

@ -0,0 +1,131 @@
#! /usr/bin/ruby
require "optparse"
require "net/http"
require"openssl"
require "uri"
# CLI Options
options = {
protocol: "http",
host: "localhost",
port: "9999",
interval: 5
}
OptionParser.new do |opt|
opt.banner = "Usage: air-sensor-data [OPTIONS]"
opt.on("-o","--org ORG","The organization to write data to. REQUIRED.") do |org|
options[:org] = org
end
opt.on("-b","--bucket BUCKET","The bucket to write data to. REQUIRED.") do |bucket|
options[:bucket] = bucket
end
opt.on("-t","--token TOKEN","Your InfluxDB authentication token. REQUIRED.") do |token|
options[:token] = token
end
opt.on("-h","--host host","Your InfluxDB host. Defaults to 'localhost'") do |host|
options[:host] = host
end
opt.on("-p","--port port","Your InfluxDB port. Defaults to '9999'") do |port|
options[:port] = port
end
opt.on("-i","--interval interval",Integer,"The interval (in seconds) at which to write data. Defaults to '5'.") do |interval|
options[:interval] = interval
end
opt.on("-s","--tls", "Sends data over HTTPS.") do |tls|
options[:protocol] = "https"
end
opt.on("--help","Displays this help information.") do
puts opt
exit
end
end.parse!
unless options[:org] && options[:bucket] && options[:token]
$stderr.puts "\nError: you must specify an organization, bucket, and token.\nUse the '--help' flag for more info.\n\n"
exit 1
end
# Global Variables
$protocol = options[:protocol]
$host = options[:host]
$port = options[:port]
$org = options[:org]
$bucket = options[:bucket]
$token = options[:token]
$interval = options[:interval]
# Seed Data
seeds = [
{id: 100, t: 71.2, h: 35.1, c: 0.5, t_inc: -0.05..0.05, h_inc: -0.05..0.05, c_inc: -0.02..0.02},
{id: 101, t: 71.8, h: 34.9, c: 0.5, t_inc: -0.05..0.05, h_inc: -0.05..0.05, c_inc: -0.02..0.02},
{id: 102, t: 72.0, h: 34.9, c: 0.5, t_inc: -0.05..0.05, h_inc: -0.05..0.05, c_inc: -0.02..0.02},
{id: 103, t: 71.3, h: 35.2, c: 0.4, t_inc: -0.05..0.05, h_inc: -0.05..0.05, c_inc: -0.02..0.02},
{id: 200, t: 73.6, h: 35.8, c: 0.5, t_inc: -0.05..0.05, h_inc: -0.05..0.05, c_inc: -0.02..0.05},
{id: 201, t: 74.0, h: 35.2, c: 0.5, t_inc: -0.05..0.05, h_inc: -0.05..0.05, c_inc: -0.02..0.02},
{id: 202, t: 75.3, h: 35.7, c: 0.5, t_inc: -0.05..0.05, h_inc: -0.05..0.05, c_inc: -0.02..0.02},
{id: 203, t: 74.8, h: 35.9, c: 0.4, t_inc: -0.05..0.05, h_inc: -0.05..0.05, c_inc: -0.02..0.02},
]
def increment_data(data={})
data[:t] += rand(data[:t_inc])
data[:h] += rand(data[:h_inc])
data[:c] += rand(data[:c_inc])
# Avoid negative humidity and co
if data[:h] < 0
data[:h] = 0
end
if data[:c] < 0
data[:c] = 0
end
return data
end
def line_protocol_batch(point_data=[])
batch = []
point_data.each do |v|
batch << "airSensors,sensor_id=TLM0#{v[:id]} temperature=#{v[:t]},humidity=#{v[:h]},co=#{v[:c]}"
end
return batch.join("\n")
end
def send_data(batch)
uri = URI.parse("#{$protocol}://#{$host}:#{$port}/api/v2/write?org=#{URI::encode($org)}&bucket=#{URI::encode($bucket)}")
request = Net::HTTP::Post.new(uri)
request["Authorization"] = "Token #{$token}"
request.body = "#{batch}"
req_options = {
use_ssl: uri.scheme == "https",
ssl_version: :SSLv23
}
response = Net::HTTP.start(uri.hostname, uri.port, req_options) do |http|
http.request(request)
end
end
def send_batches(dataset=[], interval=$interval)
dataset.map! { |seed| increment_data(seed) }
send_data(line_protocol_batch(dataset))
sleep interval
send_batches(dataset,interval)
end
begin
puts "Sending data to #{$protocol}://#{$host}:#{$port}..."
puts " (ctrl-c to kill the data stream)"
send_batches(seeds)
rescue Interrupt
puts "\nStopping data stream..."
end

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,9 @@
sensor_id,location,model_number,last_inspected
TLM0100,Main Lobby,TLM89092A,1/11/2019
TLM0101,Room 101,TLM89092A,1/11/2019
TLM0102,Room 102,TLM89092B,1/11/2019
TLM0103,Mechanical Room,TLM90012Z,1/14/2019
TLM0200,Conference Room,TLM89092B,9/24/2018
TLM0201,Room 201,TLM89092B,9/24/2018
TLM0202,Room 202,TLM89092A,9/24/2018
TLM0203,Room 203,TLM89092A,9/24/2018
1 sensor_id location model_number last_inspected
2 TLM0100 Main Lobby TLM89092A 1/11/2019
3 TLM0101 Room 101 TLM89092A 1/11/2019
4 TLM0102 Room 102 TLM89092B 1/11/2019
5 TLM0103 Mechanical Room TLM90012Z 1/14/2019
6 TLM0200 Conference Room TLM89092B 9/24/2018
7 TLM0201 Room 201 TLM89092B 9/24/2018
8 TLM0202 Room 202 TLM89092A 9/24/2018
9 TLM0203 Room 203 TLM89092A 9/24/2018

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB