commit
280a2efe76
|
@ -10,7 +10,8 @@ menu:
|
|||
weight: 501
|
||||
---
|
||||
|
||||
The `aggregateWindow()` function applies an aggregate function to fixed windows of time.
|
||||
The `aggregateWindow()` function applies an aggregate or selector function
|
||||
(any function with a `column` parameter) to fixed windows of time.
|
||||
|
||||
_**Function type:** Aggregate_
|
||||
|
||||
|
@ -25,7 +26,7 @@ aggregateWindow(
|
|||
)
|
||||
```
|
||||
|
||||
As data is windowed into separate tables and aggregated, the `_time` column is dropped from each group key.
|
||||
As data is windowed into separate tables and processed, the `_time` column is dropped from each group key.
|
||||
This function copies the timestamp from a remaining column into the `_time` column.
|
||||
View the [function definition](#function-definition).
|
||||
|
||||
|
@ -42,7 +43,7 @@ The [aggregate function](/v2.0/reference/flux/functions/built-in/transformations
|
|||
_**Data type:** Function_
|
||||
|
||||
{{% note %}}
|
||||
Only aggregate functions with a `column` parameter (singular) work with `aggregateWindow()`.
|
||||
Only aggregate and selector functions with a `column` parameter (singular) work with `aggregateWindow()`.
|
||||
{{% /note %}}
|
||||
|
||||
### column
|
||||
|
@ -84,10 +85,10 @@ from(bucket: "example-bucket")
|
|||
fn: mean
|
||||
)
|
||||
```
|
||||
###### Specifying parameters of the aggregate function
|
||||
To use `aggregateWindow()` aggregate functions that don't provide defaults for required parameters,
|
||||
for the `fn` parameter, define an anonymous function with `columns` and `tables` parameters
|
||||
that pipe-forwards tables into the aggregate function with all required parameters defined:
|
||||
###### Specify parameters of the aggregate function
|
||||
To use functions that don't provide defaults for required parameters with `aggregateWindow()`,
|
||||
define an anonymous function with `column` and `tables` parameters that pipe-forward
|
||||
tables into the aggregate or selector function with all required parameters defined:
|
||||
|
||||
```js
|
||||
from(bucket: "example-bucket")
|
||||
|
|
|
@ -17,7 +17,11 @@ _**Function type:** Aggregate_
|
|||
_**Output data type:** Float_
|
||||
|
||||
```js
|
||||
difference(nonNegative: false, column: "_value")
|
||||
difference(
|
||||
nonNegative: false,
|
||||
column: "_value",
|
||||
keepFirst: false
|
||||
)
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
@ -34,6 +38,13 @@ Defaults to `"_value"`.
|
|||
|
||||
_**Data type:** String_
|
||||
|
||||
### keepFirst
|
||||
Indicates the first row should be kept.
|
||||
If `true`, the difference will be `null`.
|
||||
Defaults to `false`.
|
||||
|
||||
_**Data type:** Boolean_
|
||||
|
||||
## Subtraction rules for numeric types
|
||||
- The difference between two non-null values is their algebraic difference;
|
||||
or `null`, if the result is negative and `nonNegative: true`;
|
||||
|
@ -90,6 +101,20 @@ from(bucket: "example-bucket")
|
|||
| 0004 | 6 | tv |
|
||||
| 0005 | null | tv |
|
||||
|
||||
|
||||
#### With keepFirst set to true
|
||||
```js
|
||||
|> difference(nonNegative: false, keepfirst: true):
|
||||
```
|
||||
###### Output table
|
||||
| _time | _value | tag |
|
||||
|:-----:|:------:|:---:|
|
||||
| 0001 | null | tv |
|
||||
| 0002 | null | tv |
|
||||
| 0003 | -2 | tv |
|
||||
| 0004 | 6 | tv |
|
||||
| 0005 | null | tv |
|
||||
|
||||
<hr style="margin-top:4rem"/>
|
||||
|
||||
##### Related InfluxQL functions and statements:
|
||||
|
|
|
@ -0,0 +1,63 @@
|
|||
---
|
||||
title: doubleEMA() function
|
||||
description: >
|
||||
The `doubleEMA()` function calculates the exponential moving average of values
|
||||
grouped into `n` number of points, giving more weight to recent data at double
|
||||
the rate of `exponentialMovingAverage()`.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: doubleEMA
|
||||
parent: built-in-aggregates
|
||||
weight: 501
|
||||
related:
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/movingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/tripleema/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/timedmovingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/exponentialmovingaverage/
|
||||
- https://docs.influxdata.com/influxdb/v1.7/query_language/functions/#double-exponential-moving-average, InfluxQL DOUBLE_EXPONENTIAL_MOVING_AVERAGE()
|
||||
---
|
||||
|
||||
The `doubleEMA()` function calculates the exponential moving average of values in
|
||||
the `_value` column grouped into `n` number of points, giving more weight to recent
|
||||
data at double the rate of [`exponentialMovingAverage()`](/v2.0/reference/flux/functions/built-in/transformations/aggregates/exponentialmovingaverage/).
|
||||
|
||||
_**Function type:** Aggregate_
|
||||
|
||||
```js
|
||||
doubleEMA(n: 5)
|
||||
```
|
||||
|
||||
##### Double exponential moving average rules
|
||||
- A double exponential moving average is defined as `doubleEMA = 2 * EMA_N - EMA of EMA_N`.
|
||||
- `EMA` is an exponential moving average.
|
||||
- `N = n` is the period used to calculate the EMA.
|
||||
- A true double exponential moving average requires at least `2 * n - 1` values.
|
||||
If not enough values exist to calculate the double EMA, it returns a `NaN` value.
|
||||
- `doubleEMA()` inherits all [exponential moving average rules](/v2.0/reference/flux/functions/built-in/transformations/aggregates/exponentialmovingaverage/#exponential-moving-average-rules).
|
||||
|
||||
## Parameters
|
||||
|
||||
### n
|
||||
The number of points to average.
|
||||
|
||||
_**Data type:** Integer_
|
||||
|
||||
## Examples
|
||||
|
||||
#### Calculate a five point double exponential moving average
|
||||
```js
|
||||
from(bucket: "example-bucket"):
|
||||
|> range(start: -12h)
|
||||
|> doubleEMA(n: 5)
|
||||
```
|
||||
|
||||
## Function definition
|
||||
```js
|
||||
doubleEMA = (n, tables=<-) =>
|
||||
tables
|
||||
|> exponentialMovingAverage(n:n)
|
||||
|> duplicate(column:"_value", as:"ema")
|
||||
|> exponentialMovingAverage(n:n)
|
||||
|> map(fn: (r) => ({r with _value: 2.0 * r.ema - r._value}))
|
||||
|> drop(columns: ["ema"])
|
||||
```
|
|
@ -1,8 +1,8 @@
|
|||
---
|
||||
title: exponentialMovingAverage() function
|
||||
description: >
|
||||
The `exponentialMovingAverage()` function calculates the exponential moving average
|
||||
of values grouped into `n` number of points, giving more weight to recent data.
|
||||
The `exponentialMovingAverage()` function calculates the exponential moving average of values
|
||||
in the `_value` column grouped into `n` number of points, giving more weight to recent data.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: exponentialMovingAverage
|
||||
|
@ -11,22 +11,21 @@ weight: 501
|
|||
related:
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/movingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/timedmovingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/doubleema/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/tripleema/
|
||||
- https://docs.influxdata.com/influxdb/v1.7/query_language/functions/#exponential-moving-average, InfluxQL EXPONENTIAL_MOVING_AVERAGE()
|
||||
---
|
||||
|
||||
The `exponentialMovingAverage()` function calculates the exponential moving average
|
||||
of values grouped into `n` number of points, giving more weight to recent data.
|
||||
The `exponentialMovingAverage()` function calculates the exponential moving average of values
|
||||
in the `_value` column grouped into `n` number of points, giving more weight to recent data.
|
||||
|
||||
_**Function type:** Aggregate_
|
||||
|
||||
```js
|
||||
exponentialMovingAverage(
|
||||
n: 5,
|
||||
columns: ["_value"]
|
||||
)
|
||||
exponentialMovingAverage(n: 5)
|
||||
```
|
||||
|
||||
##### Exponential moving average rules:
|
||||
##### Exponential moving average rules
|
||||
- The first value of an exponential moving average over `n` values is the
|
||||
algebraic mean of `n` values.
|
||||
- Subsequent values are calculated as `y(t) = x(t) * k + y(t-1) * (1 - k)`, where:
|
||||
|
@ -43,11 +42,6 @@ The number of points to average.
|
|||
|
||||
_**Data type:** Integer_
|
||||
|
||||
### columns
|
||||
Columns to operate on. _Defaults to `["_value"]`_.
|
||||
|
||||
_**Data type:** Array of Strings_
|
||||
|
||||
## Examples
|
||||
|
||||
#### Calculate a five point exponential moving average
|
||||
|
@ -60,23 +54,20 @@ from(bucket: "example-bucket"):
|
|||
#### Table transformation with a two point exponential moving average
|
||||
|
||||
###### Input table:
|
||||
| _time | A | B | C | tag |
|
||||
|:-----:|:----:|:----:|:----:|:---:|
|
||||
| 0001 | 2 | null | 2 | tv |
|
||||
| 0002 | null | 10 | 4 | tv |
|
||||
| 0003 | 8 | 20 | 5 | tv |
|
||||
| _time | tag | _value |
|
||||
|:-----:|:---:|:------:|
|
||||
| 0001 | tv | null |
|
||||
| 0002 | tv | 10 |
|
||||
| 0003 | tv | 20 |
|
||||
|
||||
###### Query:
|
||||
```js
|
||||
// ...
|
||||
|> exponentialMovingAverage(
|
||||
n: 2,
|
||||
columns: ["A", "B", "C"]
|
||||
)
|
||||
|> exponentialMovingAverage(n: 2)
|
||||
```
|
||||
|
||||
###### Output table:
|
||||
| _time | A | B | C | tag |
|
||||
|:-----:|:----:|:----:|:----:|:---:|
|
||||
| 0002 | 2 | 10 | 3 | tv |
|
||||
| 0003 | 6 | 16.67| 4.33 | tv |
|
||||
| _time | tag | _value |
|
||||
|:-----:|:---:|:------:|
|
||||
| 0002 | tv | 10 |
|
||||
| 0003 | tv | 16.67 |
|
||||
|
|
|
@ -0,0 +1,114 @@
|
|||
---
|
||||
title: holtWinters() function
|
||||
description: >
|
||||
The `holtWinters()` function applies the Holt-Winters forecasting method to input tables.
|
||||
aliases:
|
||||
- /v2.0/reference/flux/functions/transformations/aggregates/holtwinters
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: holtWinters
|
||||
parent: built-in-aggregates
|
||||
weight: 501
|
||||
related:
|
||||
- https://docs.influxdata.com/influxdb/latest/query_language/functions/#holt-winters, InfluxQL HOLT_WINTERS()
|
||||
---
|
||||
|
||||
The `holtWinters()` function applies the Holt-Winters forecasting method to input tables.
|
||||
|
||||
_**Function type:** Aggregate_
|
||||
_**Output data type:** Float_
|
||||
|
||||
```js
|
||||
holtWinters(
|
||||
n: 10,
|
||||
seasonality: 4,
|
||||
interval: 30d,
|
||||
withFit: false,
|
||||
timeColumn: "_time",
|
||||
column: "_value",
|
||||
)
|
||||
```
|
||||
|
||||
The Holt-Winters method predicts [`n`](#n) seasonally-adjusted values for the
|
||||
specified [`column`](#column) at the specified [`interval`](#interval).
|
||||
For example, if `interval` is `6m` and `n` is `3`, results include three predicted
|
||||
values six minutes apart.
|
||||
|
||||
#### Seasonality
|
||||
[`seasonality`](#seasonality) delimits the length of a seasonal pattern according to `interval`.
|
||||
If your `interval` is `2m` and `seasonality` is `4`, then the seasonal pattern occurs every
|
||||
eight minutes or every four data points.
|
||||
If data doesn't have a seasonal pattern, set `seasonality` to `0`.
|
||||
|
||||
#### Space values evenly in time
|
||||
`holtWinters()` expects values evenly spaced in time.
|
||||
To ensure `holtWinters()` values are spaced evenly in time, the following rules apply:
|
||||
|
||||
- Data is grouped into time-based "buckets" determined by the `interval`.
|
||||
- If a bucket includes many values, the first value is used.
|
||||
- If a bucket includes no values, a missing value (`null`) is added for that bucket.
|
||||
|
||||
By default, `holtWinters()` uses the first value in each time bucket to run the Holt-Winters calculation.
|
||||
To specify other values to use in the calculation, use:
|
||||
|
||||
- [`window()`](/v2.0/reference/flux/functions/built-in/transformations/window/)
|
||||
with [selectors](/v2.0/reference/flux/functions/built-in/transformations/selectors/)
|
||||
or [aggregates](/v2.0/reference/flux/functions/built-in/transformations/aggregates/)
|
||||
- [`aggregateWindow()`](/v2.0/reference/flux/functions/built-in/transformations/aggregates/aggregatewindow)
|
||||
|
||||
#### Fitted model
|
||||
The `holtWinters()` function applies the [Nelder-Mead optimization](https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method)
|
||||
to include "fitted" data points in results when [`withFit`](#withfit) is set to `true`.
|
||||
|
||||
#### Null timestamps
|
||||
`holtWinters()` discards rows with `null` timestamps before running the Holt-Winters calculation.
|
||||
|
||||
#### Null values
|
||||
`holtWinters()` treats `null` values as missing data points and includes them in the Holt-Winters calculation.
|
||||
|
||||
## Parameters
|
||||
|
||||
### n
|
||||
The number of values to predict.
|
||||
|
||||
_**Data type: Integer**_
|
||||
|
||||
### seasonality
|
||||
The number of points in a season.
|
||||
Defaults to `0`.
|
||||
|
||||
_**Data type: Integer**_
|
||||
|
||||
### interval
|
||||
The interval between two data points.
|
||||
|
||||
_**Data type: Duration**_
|
||||
|
||||
### withFit
|
||||
Return [fitted data](#fitted-model) in results.
|
||||
Defaults to `false`.
|
||||
|
||||
_**Data type: Boolean**_
|
||||
|
||||
### timeColumn
|
||||
The time column to use.
|
||||
Defaults to `"_time"`.
|
||||
|
||||
_**Data type: String**_
|
||||
|
||||
### column
|
||||
The column to operate on.
|
||||
Defaults to `"_value"`.
|
||||
|
||||
_**Data type: String**_
|
||||
|
||||
## Examples
|
||||
|
||||
##### Use aggregateWindow to prepare data for holtWinters
|
||||
```js
|
||||
from(bucket: "example-bucket")
|
||||
|> range(start: -7y)
|
||||
|> filter(fn: (r) => r._field == "water_level")
|
||||
|> aggregateWindow(every: 379m, fn: first).
|
||||
|> holtWinters(n: 10, seasonality: 4, interval: 379m)
|
||||
```
|
|
@ -10,21 +10,21 @@ weight: 501
|
|||
related:
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/timedmovingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/exponentialmovingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/doubleema/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/tripleema/
|
||||
- https://docs.influxdata.com/influxdb/latest/query_language/functions/#moving-average, InfluxQL MOVING_AVERAGE()
|
||||
---
|
||||
|
||||
The `movingAverage()` function calculates the mean of values grouped into `n` number of points.
|
||||
The `movingAverage()` function calculates the mean of values in the `_values` column
|
||||
grouped into `n` number of points.
|
||||
|
||||
_**Function type:** Aggregate_
|
||||
|
||||
```js
|
||||
movingAverage(
|
||||
n: 5,
|
||||
columns: ["_value"]
|
||||
)
|
||||
movingAverage(n: 5)
|
||||
```
|
||||
|
||||
##### Moving average rules:
|
||||
##### Moving average rules
|
||||
- The average over a period populated by `n` values is equal to their algebraic mean.
|
||||
- The average over a period populated by only `null` values is `null`.
|
||||
- Moving averages skip `null` values.
|
||||
|
@ -38,11 +38,6 @@ The number of points to average.
|
|||
|
||||
_**Data type:** Integer_
|
||||
|
||||
### columns
|
||||
Columns to operate on. _Defaults to `["_value"]`_.
|
||||
|
||||
_**Data type:** Array of Strings_
|
||||
|
||||
## Examples
|
||||
|
||||
#### Calculate a five point moving average
|
||||
|
@ -52,36 +47,23 @@ from(bucket: "example-bucket"):
|
|||
|> movingAverage(n: 5)
|
||||
```
|
||||
|
||||
#### Calculate a ten point moving average
|
||||
```js
|
||||
movingAverage = (every, period, column="_value", tables=<-) =>
|
||||
tables
|
||||
|> window(every: every, period: period)
|
||||
|> mean(column: column)
|
||||
|> duplicate(column: "_stop", as: "_time")
|
||||
|> window(every: inf)
|
||||
```
|
||||
|
||||
#### Table transformation with a two point moving average
|
||||
|
||||
###### Input table:
|
||||
| _time | A | B | C | D | tag |
|
||||
|:-----:|:----:|:----:|:----:|:----:|:---:|
|
||||
| 0001 | null | 1 | 2 | null | tv |
|
||||
| 0002 | 6 | 2 | null | null | tv |
|
||||
| 0003 | 4 | null | 4 | 4 | tv |
|
||||
| _time | tag | _value |
|
||||
|:-----:|:---:|:------:|
|
||||
| 0001 | tv | null |
|
||||
| 0002 | tv | 6 |
|
||||
| 0003 | tv | 4 |
|
||||
|
||||
###### Query:
|
||||
```js
|
||||
// ...
|
||||
|> movingAverage(
|
||||
n: 2,
|
||||
columns: ["A", "B", "C", "D"]
|
||||
)
|
||||
|> movingAverage(n: 2 )
|
||||
```
|
||||
|
||||
###### Output table:
|
||||
| _time | A | B | C | D | tag |
|
||||
|:-----:|:----:|:----:|:----:|:----:|:---:|
|
||||
| 0002 | 6 | 1.5 | 2 | null | tv |
|
||||
| 0003 | 5 | 2 | 4 | 4 | tv |
|
||||
| _time | tag | _value |
|
||||
|:-----:|:---:|:------:|
|
||||
| 0002 | tv | 6 |
|
||||
| 0003 | tv | 5 |
|
||||
|
|
|
@ -0,0 +1,103 @@
|
|||
---
|
||||
title: relativeStrengthIndex() function
|
||||
description: >
|
||||
The `relativeStrengthIndex()` function measures the relative speed and change of
|
||||
values in an input table.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: relativeStrengthIndex
|
||||
parent: built-in-aggregates
|
||||
weight: 501
|
||||
related:
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/movingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/timedmovingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/exponentialmovingaverage/
|
||||
- https://docs.influxdata.com/influxdb/v1.7/query_language/functions/#relative-strength-index, InfluxQL RELATIVE_STRENGTH_INDEX()
|
||||
---
|
||||
|
||||
The `relativeStrengthIndex()` function measures the relative speed and change of
|
||||
values in an input table.
|
||||
|
||||
_**Function type:** Aggregate_
|
||||
|
||||
```js
|
||||
relativeStrengthIndex(
|
||||
n: 5,
|
||||
columns: ["_value"]
|
||||
)
|
||||
```
|
||||
|
||||
##### Relative strength index rules
|
||||
- The general equation for calculating a relative strength index (RSI) is
|
||||
`RSI = 100 - (100 / (1 + (AVG GAIN / AVG LOSS)))`.
|
||||
- For the first value of the RSI, `AVG GAIN` and `AVG LOSS` are averages of the `n` period.
|
||||
- For subsequent calculations:
|
||||
- `AVG GAIN` = `((PREVIOUS AVG GAIN) * (n - 1)) / n`
|
||||
- `AVG LOSS` = `((PREVIOUS AVG LOSS) * (n - 1)) / n`
|
||||
- `relativeStrengthIndex()` ignores `null` values.
|
||||
|
||||
## Parameters
|
||||
|
||||
### n
|
||||
The number of values to use to calculate the RSI.
|
||||
|
||||
_**Data type:** Integer_
|
||||
|
||||
### columns
|
||||
Columns to operate on. _Defaults to `["_value"]`_.
|
||||
|
||||
_**Data type:** Array of Strings_
|
||||
|
||||
## Examples
|
||||
|
||||
#### Calculate a five point relative strength index
|
||||
```js
|
||||
from(bucket: "example-bucket"):
|
||||
|> range(start: -12h)
|
||||
|> relativeStrengthIndex(n: 5)
|
||||
```
|
||||
|
||||
#### Table transformation with a ten point RSI
|
||||
|
||||
###### Input table:
|
||||
| _time | A | B | tag |
|
||||
|:-----:|:----:|:----:|:---:|
|
||||
| 0001 | 1 | 1 | tv |
|
||||
| 0002 | 2 | 2 | tv |
|
||||
| 0003 | 3 | 3 | tv |
|
||||
| 0004 | 4 | 4 | tv |
|
||||
| 0005 | 5 | 5 | tv |
|
||||
| 0006 | 6 | 6 | tv |
|
||||
| 0007 | 7 | 7 | tv |
|
||||
| 0008 | 8 | 8 | tv |
|
||||
| 0009 | 9 | 9 | tv |
|
||||
| 0010 | 10 | 10 | tv |
|
||||
| 0011 | 11 | 11 | tv |
|
||||
| 0012 | 12 | 12 | tv |
|
||||
| 0013 | 13 | 13 | tv |
|
||||
| 0014 | 14 | 14 | tv |
|
||||
| 0015 | 15 | 15 | tv |
|
||||
| 0016 | 16 | 16 | tv |
|
||||
| 0017 | 17 | null | tv |
|
||||
| 0018 | 18 | 17 | tv |
|
||||
|
||||
###### Query:
|
||||
```js
|
||||
// ...
|
||||
|> relativeStrengthIndex(
|
||||
n: 10,
|
||||
columns: ["A", "B"]
|
||||
)
|
||||
```
|
||||
|
||||
###### Output table:
|
||||
| _time | A | B | tag |
|
||||
|:-----:|:----:|:----:|:---:|
|
||||
| 0011 | 100 | 100 | tv |
|
||||
| 0012 | 100 | 100 | tv |
|
||||
| 0013 | 100 | 100 | tv |
|
||||
| 0014 | 100 | 100 | tv |
|
||||
| 0015 | 100 | 100 | tv |
|
||||
| 0016 | 90 | 90 | tv |
|
||||
| 0017 | 81 | 90 | tv |
|
||||
| 0018 | 72.9 | 81 | tv |
|
|
@ -11,6 +11,8 @@ weight: 501
|
|||
related:
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/movingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/exponentialmovingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/doubleema/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/tripleema/
|
||||
- https://docs.influxdata.com/influxdb/latest/query_language/functions/#moving-average, InfluxQL MOVING_AVERAGE()
|
||||
---
|
||||
|
||||
|
|
|
@ -0,0 +1,68 @@
|
|||
---
|
||||
title: tripleEMA() function
|
||||
description: >
|
||||
The `tripleEMA()` function calculates the exponential moving average of values
|
||||
grouped into `n` number of points, giving more weight to recent data with less lag
|
||||
than `exponentialMovingAverage()` and `doubleEMA()`.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: tripleEMA
|
||||
parent: built-in-aggregates
|
||||
weight: 501
|
||||
related:
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/movingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/doubleema/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/timedmovingaverage/
|
||||
- /v2.0/reference/flux/functions/built-in/transformations/aggregates/exponentialmovingaverage/
|
||||
- https://docs.influxdata.com/influxdb/v1.7/query_language/functions/#triple-exponential-moving-average, InfluxQL TRIPLE_EXPONENTIAL_MOVING_AVERAGE()
|
||||
---
|
||||
|
||||
The `tripleEMA()` function calculates the exponential moving average of values in
|
||||
the `_value` column grouped into `n` number of points, giving more weight to recent
|
||||
data with less lag than
|
||||
[`exponentialMovingAverage()`](/v2.0/reference/flux/functions/built-in/transformations/aggregates/exponentialmovingaverage/)
|
||||
and [`doubleEMA()`](/v2.0/reference/flux/functions/built-in/transformations/aggregates/doubleema/).
|
||||
|
||||
_**Function type:** Aggregate_
|
||||
|
||||
```js
|
||||
tripleEMA(n: 5)
|
||||
```
|
||||
|
||||
##### Triple exponential moving average rules
|
||||
- A triple exponential moving average is defined as `tripleEMA = (3 * EMA_1) - (3 * EMA_2) + EMA_3`.
|
||||
- `EMA_1` is the exponential moving average of the original data.
|
||||
- `EMA_2` is the exponential moving average of `EMA_1`.
|
||||
- `EMA_3` is the exponential moving average of `EMA_2`.
|
||||
- A true triple exponential moving average requires at least requires at least `3 * n - 2` values.
|
||||
If not enough values exist to calculate the triple EMA, it returns a `NaN` value.
|
||||
- `tripleEMA()` inherits all [exponential moving average rules](/v2.0/reference/flux/functions/built-in/transformations/aggregates/exponentialmovingaverage/#exponential-moving-average-rules).
|
||||
|
||||
## Parameters
|
||||
|
||||
### n
|
||||
The number of points to average.
|
||||
|
||||
_**Data type:** Integer_
|
||||
|
||||
## Examples
|
||||
|
||||
#### Calculate a five point triple exponential moving average
|
||||
```js
|
||||
from(bucket: "example-bucket"):
|
||||
|> range(start: -12h)
|
||||
|> tripleEMA(n: 5)
|
||||
```
|
||||
|
||||
## Function definition
|
||||
```js
|
||||
tripleEMA = (n, tables=<-) =>
|
||||
tables
|
||||
|> exponentialMovingAverage(n:n)
|
||||
|> duplicate(column:"_value", as:"ema1")
|
||||
|> exponentialMovingAverage(n:n)
|
||||
|> duplicate(column:"_value", as:"ema2")
|
||||
|> exponentialMovingAverage(n:n)
|
||||
|> map(fn: (r) => ({r with _value: 3.0 * r.ema1 - 3.0 * r.ema2 + r._value}))
|
||||
|> drop(columns: ["ema1", "ema2"])
|
||||
```
|
|
@ -0,0 +1,31 @@
|
|||
---
|
||||
title: date.microsecond() function
|
||||
description: >
|
||||
The `date.microsecond()` function returns the microsecond of a specified time.
|
||||
Results range from `[0-999999]`.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: date.microsecond
|
||||
parent: Date
|
||||
weight: 301
|
||||
---
|
||||
|
||||
The `date.microsecond()` function returns the microsecond of a specified time.
|
||||
Results range from `[0-999999]`.
|
||||
|
||||
_**Function type:** Transformation_
|
||||
|
||||
```js
|
||||
import "date"
|
||||
|
||||
date.microsecond(t: 2019-07-17T12:05:21.012934584Z)
|
||||
|
||||
// Returns 12934
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
### t
|
||||
The time to operate on.
|
||||
|
||||
_**Data type:** Time_
|
|
@ -0,0 +1,31 @@
|
|||
---
|
||||
title: date.millisecond() function
|
||||
description: >
|
||||
The `date.millisecond()` function returns the millisecond of a specified time.
|
||||
Results range from `[0-999999]`.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: date.millisecond
|
||||
parent: Date
|
||||
weight: 301
|
||||
---
|
||||
|
||||
The `date.millisecond()` function returns the millisecond of a specified time.
|
||||
Results range from `[0-999]`.
|
||||
|
||||
_**Function type:** Transformation_
|
||||
|
||||
```js
|
||||
import "date"
|
||||
|
||||
date.millisecond(t: 2019-07-17T12:05:21.012934584Z)
|
||||
|
||||
// Returns 12
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
### t
|
||||
The time to operate on.
|
||||
|
||||
_**Data type:** Time_
|
|
@ -0,0 +1,31 @@
|
|||
---
|
||||
title: date.nanosecond() function
|
||||
description: >
|
||||
The `date.nanosecond()` function returns the nanosecond of a specified time.
|
||||
Results range from `[0-999999999]`.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: date.nanosecond
|
||||
parent: Date
|
||||
weight: 301
|
||||
---
|
||||
|
||||
The `date.nanosecond()` function returns the nanosecond of a specified time.
|
||||
Results range from `[0-999999999]`.
|
||||
|
||||
_**Function type:** Transformation_
|
||||
|
||||
```js
|
||||
import "date"
|
||||
|
||||
date.nanosecond(t: 2019-07-17T12:05:21.012934584Z)
|
||||
|
||||
// Returns 12934584
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
### t
|
||||
The time to operate on.
|
||||
|
||||
_**Data type:** Time_
|
|
@ -0,0 +1,31 @@
|
|||
---
|
||||
title: date.quarter() function
|
||||
description: >
|
||||
The `date.quarter()` function returns the quarter of the year for a specified time.
|
||||
Results range from `[1-4]`.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: date.quarter
|
||||
parent: Date
|
||||
weight: 301
|
||||
---
|
||||
|
||||
The `date.quarter()` function returns the quarter of the year for a specified time.
|
||||
Results range from `[1-4]`.
|
||||
|
||||
_**Function type:** Transformation_
|
||||
|
||||
```js
|
||||
import "date"
|
||||
|
||||
date.quarter(t: 2019-07-17T12:05:21.012Z)
|
||||
|
||||
// Returns 3
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
### t
|
||||
The time to operate on.
|
||||
|
||||
_**Data type:** Time_
|
|
@ -0,0 +1,57 @@
|
|||
---
|
||||
title: date.truncate() function
|
||||
description: >
|
||||
The `date.truncate()` function truncates a time to a specified unit.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: date.truncate
|
||||
parent: Date
|
||||
weight: 301
|
||||
---
|
||||
|
||||
The `date.truncate()` function truncates a time to a specified unit.
|
||||
|
||||
_**Function type:** Transformation_
|
||||
|
||||
```js
|
||||
import "date"
|
||||
|
||||
date.truncate(
|
||||
t: 2019-07-17T12:05:21.012Z
|
||||
unit: 1s
|
||||
)
|
||||
|
||||
// Returns 2019-07-17T12:05:21.000000000Z
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
### t
|
||||
The time to operate on.
|
||||
|
||||
_**Data type:** Time_
|
||||
|
||||
### unit
|
||||
The unit time to truncate to.
|
||||
|
||||
_**Data type:** Duration_
|
||||
|
||||
{{% note %}}
|
||||
Only use `1` and the unit of time to specify the `unit`.
|
||||
For example: `1s`, `1m`, `1h`.
|
||||
{{% /note %}}
|
||||
|
||||
## Examples
|
||||
```js
|
||||
import "date"
|
||||
|
||||
date.truncate(t: "2019-06-03T13:59:01.000000000Z", unit: 1s)
|
||||
// Returns 2019-06-03T13:59:01.000000000Z
|
||||
|
||||
date.truncate(t: "2019-06-03T13:59:01.000000000Z", unit: 1m)
|
||||
// Returns 2019-06-03T13:59:00.000000000Z
|
||||
|
||||
date.truncate(t: "2019-06-03T13:59:01.000000000Z", unit: 1h)
|
||||
// Returns 2019-06-03T13:00:00.000000000Z
|
||||
|
||||
```
|
|
@ -0,0 +1,31 @@
|
|||
---
|
||||
title: date.week() function
|
||||
description: >
|
||||
The `date.week()` function returns the ISO week of the year for a specified time.
|
||||
Results range from `[1-53]`.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: date.week
|
||||
parent: Date
|
||||
weight: 301
|
||||
---
|
||||
|
||||
The `date.week()` function returns the ISO week of the year for a specified time.
|
||||
Results range from `[1-53]`.
|
||||
|
||||
_**Function type:** Transformation_
|
||||
|
||||
```js
|
||||
import "date"
|
||||
|
||||
date.week(t: 2019-07-17T12:05:21.012Z)
|
||||
|
||||
// Returns 29
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
### t
|
||||
The time to operate on.
|
||||
|
||||
_**Data type:** Time_
|
|
@ -0,0 +1,30 @@
|
|||
---
|
||||
title: date.year() function
|
||||
description: >
|
||||
The `date.year()` function returns the year of a specified time.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: date.year
|
||||
parent: Date
|
||||
weight: 301
|
||||
draft: true
|
||||
---
|
||||
|
||||
The `date.year()` function returns the year of a specified time.
|
||||
|
||||
_**Function type:** Transformation_
|
||||
|
||||
```js
|
||||
import "date"
|
||||
|
||||
date.year(t: 2019-07-17T12:05:21.012Z)
|
||||
|
||||
// Returns 2019
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
### t
|
||||
The time to operate on.
|
||||
|
||||
_**Data type:** Time_
|
|
@ -0,0 +1,22 @@
|
|||
---
|
||||
title: Flux runtime package
|
||||
list_title: Runtime package
|
||||
description: >
|
||||
The Flux runtime package includes functions that provide information about the
|
||||
current Flux runtime. Import the `runtime` package.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: Runtime
|
||||
parent: Flux packages and functions
|
||||
weight: 202
|
||||
v2.0/tags: [runtime, functions, package]
|
||||
---
|
||||
|
||||
The Flux runtime package includes functions that provide information about the
|
||||
current Flux runtime. Import the `runtime` package:
|
||||
|
||||
```js
|
||||
import "runtime"
|
||||
```
|
||||
|
||||
{{< children type="functions" show="pages" >}}
|
|
@ -0,0 +1,20 @@
|
|||
---
|
||||
title: runtime.version() function
|
||||
description: The `runtime.version()` function returns the current Flux version.
|
||||
menu:
|
||||
v2_0_ref:
|
||||
name: runtime.version
|
||||
parent: Runtime
|
||||
weight: 401
|
||||
---
|
||||
|
||||
The `runtime.version()` function returns the current Flux version.
|
||||
|
||||
_**Function type:** Miscellaneous_
|
||||
_**Output data type:** String_
|
||||
|
||||
```js
|
||||
import "runtime"
|
||||
|
||||
runtime.version()
|
||||
```
|
|
@ -11,13 +11,37 @@ aliases:
|
|||
---
|
||||
|
||||
{{% note %}}
|
||||
_The latest release of InfluxDB v2.0 alpha includes **Flux v0.37.2**.
|
||||
_The latest release of InfluxDB v2.0 alpha includes **Flux v0.38.0**.
|
||||
Though newer versions of Flux may be available, they will not be included with
|
||||
InfluxDB until the next InfluxDB v2.0 release._
|
||||
{{% /note %}}
|
||||
|
||||
---
|
||||
|
||||
## v0.38.0 [2019-08-06]
|
||||
|
||||
### Features
|
||||
- Update selectors to operate on time columns.
|
||||
- Add `relativeStrengthIndex()` transformation.
|
||||
- Add double and triple exponential average transformations (`doubleEMA()` and `tripleEMA()`).
|
||||
- Add `holtWinters()` transformation.
|
||||
- Add `keepFirst` parameter to `difference()`.
|
||||
- DatePart equivalent functions.
|
||||
- Add runtime package.
|
||||
- Add and subtract duration literal arithmetic.
|
||||
- Allow `keep()` to run regardless of nonexistent columns.
|
||||
If all columns given are nonexistent, `keep()` returns an empty table.
|
||||
- Scanner returns positioning.
|
||||
|
||||
### Bug fixes
|
||||
- Function resolver now keeps track of local assignments that may be evaluated at runtime.
|
||||
- Fixed InfluxDB test errors.
|
||||
- Add range to tests to pass in InfluxDB.
|
||||
- Allow converting a duration to a duration.
|
||||
- Catch integer overflow and underflow for literals.
|
||||
|
||||
---
|
||||
|
||||
## v0.37.2 [2019-07-24]
|
||||
|
||||
- _General cleanup of internal code._
|
||||
|
|
Loading…
Reference in New Issue