Merge branch 'master' into geo/strict-explanation
commit
18a9cbf543
|
@ -509,6 +509,38 @@ The following options are available:
|
|||
{{< ui-message color="green" text="The message displayed in the notification.">}}
|
||||
```
|
||||
|
||||
### Flexbox-formatted content blocks
|
||||
CSS Flexbox formatting lets you create columns in article content that adjust and
|
||||
flow based on the viewable width.
|
||||
In article content, this helps if you have narrow tables that could be displayed
|
||||
side-by-side, rather than stacked vertically.
|
||||
Use the `{{< flex >}}` shortcode to create the Flexbox wrapper.
|
||||
Use the `{{% flex-content %}}` shortcode to identify each column content block.
|
||||
|
||||
```md
|
||||
{{< flex >}}
|
||||
{{% flex-content %}}
|
||||
Column 1
|
||||
{{% /flex-content %}}
|
||||
{{% flex-content %}}
|
||||
Column 2
|
||||
{{% /flex-content %}}
|
||||
{{< /flex >}}
|
||||
```
|
||||
|
||||
`{{% flex-content %}}` has an optional width argument that determines the maximum
|
||||
width of the column.
|
||||
|
||||
```md
|
||||
{{% flex-content "half" %}}
|
||||
```
|
||||
|
||||
The following options are available:
|
||||
|
||||
- half _(Default)_
|
||||
- third
|
||||
- quarter
|
||||
|
||||
### Reference content
|
||||
The InfluxDB documentation is "task-based," meaning content primarily focuses on
|
||||
what a user is **doing**, not what they are **using**.
|
||||
|
|
|
@ -104,6 +104,7 @@
|
|||
"article/cloud",
|
||||
"article/enterprise",
|
||||
"article/feedback",
|
||||
"article/flex",
|
||||
"article/lists",
|
||||
"article/note",
|
||||
"article/pagination-btns",
|
||||
|
|
|
@ -0,0 +1,24 @@
|
|||
/////////////////////////// Flex Content Blocks ///////////////////////////
|
||||
|
||||
.flex-wrapper {
|
||||
display: flex;
|
||||
flex-wrap: wrap;
|
||||
}
|
||||
|
||||
.flex-container {
|
||||
margin-right: 1rem;
|
||||
&.half { width: calc(50% - 1rem); }
|
||||
&.third { width: calc(33.33% - 1rem); }
|
||||
&.quarter { width: calc(25% - 1rem); }
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
///////////////////////////////// MEDIA QUERIES ////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@include media(small) {
|
||||
.flex-container {
|
||||
&.half, &.third { width: calc(100% - 1rem); }
|
||||
&.quarter { width: calc(50% - 1rem); }
|
||||
}
|
||||
}
|
|
@ -45,4 +45,4 @@ Guidelines used to estimate costs for default configurations:
|
|||
- **Professional**. For teams monitoring multiple disparate systems or use cases.
|
||||
- **Enterprise**. For teams monitoring multiple domains and use cases accessing a variety of dashboards.
|
||||
5. Adjust the default configuration values to match your number of devices, plugins, metrics, and so on. The **Projected Usage** costs are automatically updated as you adjust your configuration.
|
||||
6. Click **Get started with InfluxDB Cloud** [to get started](https://v2.docs.influxdata.com/v2.0/cloud/get-started/).
|
||||
6. Click **Get started with InfluxDB Cloud** [to get started](/v2.0/cloud/get-started/).
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
title: Execute queries
|
||||
seotitle: Different ways to query InfluxDB
|
||||
description: There are multiple ways to query data from InfluxDB including the InfluxDB UI, CLI, and API.
|
||||
weight: 102
|
||||
weight: 103
|
||||
menu:
|
||||
v2_0:
|
||||
name: Execute queries
|
||||
|
|
|
@ -0,0 +1,36 @@
|
|||
---
|
||||
title: Query data with Flux
|
||||
description: Guides that walk through both common and complex queries and use cases for Flux.
|
||||
weight: 102
|
||||
v2.0/tags: [flux, query]
|
||||
menu:
|
||||
v2_0:
|
||||
name: Query with Flux
|
||||
parent: Query data
|
||||
alias:
|
||||
- /v2.0/query-data/guides/
|
||||
---
|
||||
|
||||
The following guides walk through both common and complex queries and use cases for Flux.
|
||||
|
||||
{{% note %}}
|
||||
#### Example data variable
|
||||
Many of the examples provided in the following guides use a `data` variable,
|
||||
which represents a basic query that filters data by measurement and field.
|
||||
`data` is defined as:
|
||||
|
||||
```js
|
||||
data = from(bucket: "example-bucket")
|
||||
|> range(start: -1h)
|
||||
|> filter(fn: (r) =>
|
||||
r._measurement == "example-measurement" and
|
||||
r._field == "example-field"
|
||||
)
|
||||
```
|
||||
{{% /note %}}
|
||||
|
||||
## Flux query guides
|
||||
|
||||
---
|
||||
|
||||
{{< children >}}
|
|
@ -1,15 +1,18 @@
|
|||
---
|
||||
title: Query using conditional logic
|
||||
seotitle: Query using conditional logic in Flux
|
||||
list_title: Use conditional logic
|
||||
description: >
|
||||
This guide describes how to use Flux conditional expressions, such as `if`,
|
||||
`else`, and `then`, to query and transform data.
|
||||
v2.0/tags: [conditionals, flux]
|
||||
menu:
|
||||
v2_0:
|
||||
name: Query using conditionals
|
||||
parent: How-to guides
|
||||
weight: 209
|
||||
name: Use conditional logic
|
||||
parent: Query with Flux
|
||||
weight: 220
|
||||
aliases:
|
||||
- /v2.0/query-data/guides/conditional-logic/
|
||||
---
|
||||
|
||||
Flux provides `if`, `then`, and `else` conditional expressions that allow for powerful and flexible Flux queries.
|
|
@ -0,0 +1,67 @@
|
|||
---
|
||||
title: Query cumulative sum
|
||||
seotitle: Query cumulative sum in Flux
|
||||
list_title: Cumulative sum
|
||||
description: >
|
||||
Use the `cumulativeSum()` function to calculate a running total of values.
|
||||
weight: 210
|
||||
menu:
|
||||
v2_0:
|
||||
parent: Query with Flux
|
||||
name: Query the cumulative sum
|
||||
v2.0/tags: [query, cumulative sum]
|
||||
---
|
||||
|
||||
Use the [`cumulativeSum()` function](/v2.0/reference/flux/stdlib/built-in/transformations/cumulativesum/)
|
||||
to calculate a running total of values.
|
||||
`cumulativeSum` sums the values of subsequent records and returns each row updated with the summed total.
|
||||
|
||||
{{< flex >}}
|
||||
{{% flex-content "half" %}}
|
||||
**Given the following input table:**
|
||||
|
||||
| _time | _value |
|
||||
| ----- |:------:|
|
||||
| 0001 | 1 |
|
||||
| 0002 | 2 |
|
||||
| 0003 | 1 |
|
||||
| 0004 | 3 |
|
||||
{{% /flex-content %}}
|
||||
{{% flex-content "half" %}}
|
||||
**`cumulativeSum()` returns:**
|
||||
|
||||
| _time | _value |
|
||||
| ----- |:------:|
|
||||
| 0001 | 1 |
|
||||
| 0002 | 3 |
|
||||
| 0003 | 4 |
|
||||
| 0004 | 7 |
|
||||
{{% /flex-content %}}
|
||||
{{< /flex >}}
|
||||
|
||||
{{% note %}}
|
||||
The examples below use the [example data variable](/v2.0/query-data/flux/#example-data-variable).
|
||||
{{% /note %}}
|
||||
|
||||
##### Calculate the running total of values
|
||||
```js
|
||||
data
|
||||
|> cumulativeSum()
|
||||
```
|
||||
|
||||
## Use cumulativeSum() with aggregateWindow()
|
||||
[`aggregateWindow()`](/v2.0/reference/flux/stdlib/built-in/transformations/aggregates/aggregatewindow/)
|
||||
segments data into windows of time, aggregates data in each window into a single
|
||||
point, then removes the time-based segmentation.
|
||||
It is primarily used to [downsample data](/v2.0/process-data/common-tasks/downsample-data/).
|
||||
|
||||
`aggregateWindow()` expects an aggregate function that returns a single row for each time window.
|
||||
To use `cumulativeSum()` with `aggregateWindow`, use `sum` in `aggregateWindow()`,
|
||||
then calculate the running total of the aggregate values with `cumulativeSum()`.
|
||||
|
||||
<!-- -->
|
||||
```js
|
||||
data
|
||||
|> aggregateWindow(every: 5m, fn: sum)
|
||||
|> cumulativeSum()
|
||||
```
|
|
@ -5,8 +5,10 @@ v2.0/tags: [functions, custom, flux]
|
|||
menu:
|
||||
v2_0:
|
||||
name: Create custom functions
|
||||
parent: How-to guides
|
||||
weight: 208
|
||||
parent: Query with Flux
|
||||
weight: 220
|
||||
aliases:
|
||||
- /v2.0/query-data/guides/custom-functions/
|
||||
---
|
||||
|
||||
Flux's functional syntax allows for custom functions.
|
|
@ -7,6 +7,8 @@ menu:
|
|||
name: Custom aggregate functions
|
||||
parent: Create custom functions
|
||||
weight: 301
|
||||
aliases:
|
||||
- /v2.0/query-data/guides/custom-functions/custom-aggregate/
|
||||
---
|
||||
|
||||
To aggregate your data, use the Flux
|
|
@ -8,8 +8,10 @@ v2.0/tags: [exists]
|
|||
menu:
|
||||
v2_0:
|
||||
name: Check if a value exists
|
||||
parent: How-to guides
|
||||
weight: 209
|
||||
parent: Query with Flux
|
||||
weight: 220
|
||||
aliases:
|
||||
- /v2.0/query-data/guides/exists/
|
||||
---
|
||||
|
||||
Use the Flux `exists` operator to check if an object contains a key or if that
|
|
@ -1,5 +1,6 @@
|
|||
---
|
||||
title: Group data in InfluxDB with Flux
|
||||
list_title: Group data
|
||||
description: >
|
||||
This guide walks through grouping data with Flux by providing examples and
|
||||
illustrating how data is shaped throughout the process.
|
||||
|
@ -7,8 +8,10 @@ v2.0/tags: [group]
|
|||
menu:
|
||||
v2_0:
|
||||
name: Group data
|
||||
parent: How-to guides
|
||||
weight: 203
|
||||
parent: Query with Flux
|
||||
weight: 202
|
||||
aliases:
|
||||
- /v2.0/query-data/guides/group-data/
|
||||
---
|
||||
|
||||
With Flux, you can group data by any column in your queried data set.
|
|
@ -1,12 +1,15 @@
|
|||
---
|
||||
title: Create histograms with Flux
|
||||
list_title: Create histograms
|
||||
description: This guide walks through using the `histogram()` function to create cumulative histograms with Flux.
|
||||
v2.0/tags: [histogram]
|
||||
menu:
|
||||
v2_0:
|
||||
name: Create histograms
|
||||
parent: How-to guides
|
||||
weight: 208
|
||||
parent: Query with Flux
|
||||
weight: 210
|
||||
aliases:
|
||||
- /v2.0/query-data/guides/histograms/
|
||||
---
|
||||
|
||||
Histograms provide valuable insight into the distribution of your data.
|
|
@ -1,13 +1,16 @@
|
|||
---
|
||||
title: Join data with Flux
|
||||
seotitle: Join data in InfluxDB with Flux
|
||||
list_title: Join data
|
||||
description: This guide walks through joining data with Flux and outlines how it shapes your data in the process.
|
||||
v2.0/tags: [join, flux]
|
||||
menu:
|
||||
v2_0:
|
||||
name: Join data
|
||||
parent: How-to guides
|
||||
weight: 205
|
||||
parent: Query with Flux
|
||||
weight: 220
|
||||
aliases:
|
||||
- /v2.0/query-data/guides/join/
|
||||
---
|
||||
|
||||
The [`join()` function](/v2.0/reference/flux/stdlib/built-in/transformations/join) merges two or more
|
|
@ -1,12 +1,15 @@
|
|||
---
|
||||
title: Manipulate timestamps with Flux
|
||||
list_title: Manipulate timestamps
|
||||
description: >
|
||||
Use Flux to process and manipulate timestamps.
|
||||
menu:
|
||||
v2_0:
|
||||
name: Manipulate timestamps
|
||||
parent: How-to guides
|
||||
weight: 209
|
||||
parent: Query with Flux
|
||||
weight: 220
|
||||
aliases:
|
||||
- /v2.0/query-data/guides/manipulate-timestamps/
|
||||
---
|
||||
|
||||
Every point stored in InfluxDB has an associated timestamp.
|
|
@ -1,13 +1,16 @@
|
|||
---
|
||||
title: Transform data with mathematic operations
|
||||
seotitle: Transform data with mathematic operations in Flux
|
||||
list_title: Transform data with math
|
||||
description: This guide describes how to use Flux to transform data with mathematic operations.
|
||||
v2.0/tags: [math, flux]
|
||||
menu:
|
||||
v2_0:
|
||||
name: Transform data with math
|
||||
parent: How-to guides
|
||||
weight: 209
|
||||
parent: Query with Flux
|
||||
weight: 205
|
||||
aliases:
|
||||
- /v2.0/query-data/guides/mathematic-operations/
|
||||
---
|
||||
|
||||
[Flux](/v2.0/reference/flux), InfluxData's data scripting and query language,
|
|
@ -0,0 +1,147 @@
|
|||
---
|
||||
title: Find median values
|
||||
seotitle: Find median values in Flux
|
||||
list_title: Median
|
||||
description: >
|
||||
Use the `median()` function to return a value representing the `0.5` quantile
|
||||
(50th percentile) or median of input data.
|
||||
weight: 210
|
||||
menu:
|
||||
v2_0:
|
||||
parent: Query with Flux
|
||||
name: Find the median
|
||||
v2.0/tags: [query, median]
|
||||
related:
|
||||
- /v2.0/query-data/flux/percentile-quantile/
|
||||
---
|
||||
|
||||
Use the [`median()` function](/v2.0/reference/flux/stdlib/built-in/transformations/aggregates/median/)
|
||||
to return a value representing the `0.5` quantile (50th percentile) or median of input data.
|
||||
|
||||
## Select a method for calculating the median
|
||||
Select one of the following methods to calculate the median:
|
||||
|
||||
- [estimate_tdigest](#estimate-tdigest)
|
||||
- [exact_mean](#exact-mean)
|
||||
- [exact_selector](#exact-selector)
|
||||
|
||||
### estimate_tdigest
|
||||
**(Default)** An aggregate method that uses a [t-digest data structure](https://github.com/tdunning/t-digest)
|
||||
to compute an accurate `0.5` quantile estimate on large data sources.
|
||||
Output tables consist of a single row containing the calculated median.
|
||||
|
||||
{{< flex >}}
|
||||
{{% flex-content %}}
|
||||
**Given the following input table:**
|
||||
|
||||
| _time | _value |
|
||||
| ----- |:------:|
|
||||
| 0001 | 1.0 |
|
||||
| 0002 | 1.0 |
|
||||
| 0003 | 2.0 |
|
||||
| 0004 | 3.0 |
|
||||
{{% /flex-content %}}
|
||||
{{% flex-content %}}
|
||||
**`estimate_tdigest` returns:**
|
||||
|
||||
| _value |
|
||||
|:------:|
|
||||
| 1.5 |
|
||||
{{% /flex-content %}}
|
||||
{{< /flex >}}
|
||||
|
||||
### exact_mean
|
||||
An aggregate method that takes the average of the two points closest to the `0.5` quantile value.
|
||||
Output tables consist of a single row containing the calculated median.
|
||||
|
||||
{{< flex >}}
|
||||
{{% flex-content %}}
|
||||
**Given the following input table:**
|
||||
|
||||
| _time | _value |
|
||||
| ----- |:------:|
|
||||
| 0001 | 1.0 |
|
||||
| 0002 | 1.0 |
|
||||
| 0003 | 2.0 |
|
||||
| 0004 | 3.0 |
|
||||
{{% /flex-content %}}
|
||||
{{% flex-content %}}
|
||||
**`exact_mean` returns:**
|
||||
|
||||
| _value |
|
||||
|:------:|
|
||||
| 1.5 |
|
||||
{{% /flex-content %}}
|
||||
{{< /flex >}}
|
||||
|
||||
### exact_selector
|
||||
A selector method that returns the data point for which at least 50% of points are less than.
|
||||
Output tables consist of a single row containing the calculated median.
|
||||
|
||||
{{< flex >}}
|
||||
{{% flex-content %}}
|
||||
**Given the following input table:**
|
||||
|
||||
| _time | _value |
|
||||
| ----- |:------:|
|
||||
| 0001 | 1.0 |
|
||||
| 0002 | 1.0 |
|
||||
| 0003 | 2.0 |
|
||||
| 0004 | 3.0 |
|
||||
{{% /flex-content %}}
|
||||
{{% flex-content %}}
|
||||
**`exact_selector` returns:**
|
||||
|
||||
| _time | _value |
|
||||
| ----- |:------:|
|
||||
| 0002 | 1.0 |
|
||||
{{% /flex-content %}}
|
||||
{{< /flex >}}
|
||||
|
||||
{{% note %}}
|
||||
The examples below use the [example data variable](/v2.0/query-data/flux/#example-data-variable).
|
||||
{{% /note %}}
|
||||
|
||||
## Find the value that represents the median
|
||||
Use the default method, `"estimate_tdigest"`, to return all rows in a table that
|
||||
contain values in the 50th percentile of data in the table.
|
||||
|
||||
```js
|
||||
data
|
||||
|> median()
|
||||
```
|
||||
|
||||
## Find the average of values closest to the median
|
||||
Use the `exact_mean` method to return a single row per input table containing the
|
||||
average of the two values closest to the mathematical median of data in the table.
|
||||
|
||||
```js
|
||||
data
|
||||
|> median(method: "exact_mean")
|
||||
```
|
||||
|
||||
## Find the point with the median value
|
||||
Use the `exact_selector` method to return a single row per input table containing the
|
||||
value that 50% of values in the table are less than.
|
||||
|
||||
```js
|
||||
data
|
||||
|> median(method: "exact_selector")
|
||||
```
|
||||
|
||||
## Use median() with aggregateWindow()
|
||||
[`aggregateWindow()`](/v2.0/reference/flux/stdlib/built-in/transformations/aggregates/aggregatewindow/)
|
||||
segments data into windows of time, aggregates data in each window into a single
|
||||
point, and then removes the time-based segmentation.
|
||||
It is primarily used to [downsample data](/v2.0/process-data/common-tasks/downsample-data/).
|
||||
|
||||
To specify the [median calculation method](#median-calculation-methods) in `aggregateWindow()`, use the
|
||||
[full function syntax](/v2.0/reference/flux/stdlib/built-in/transformations/aggregates/aggregatewindow/#specify-parameters-of-the-aggregate-function):
|
||||
|
||||
```js
|
||||
data
|
||||
|> aggregateWindow(
|
||||
every: 5m,
|
||||
fn: (tables=<-, column) => tables |> median(method: "exact_selector")
|
||||
)
|
||||
```
|
|
@ -6,8 +6,10 @@ v2.0/tags: [states, monitor, flux]
|
|||
menu:
|
||||
v2_0:
|
||||
name: Monitor states
|
||||
parent: How-to guides
|
||||
weight: 209
|
||||
parent: Query with Flux
|
||||
weight: 220
|
||||
aliases:
|
||||
- /v2.0/query-data/guides/monitor-states/
|
||||
---
|
||||
|
||||
Flux helps you monitor states in your metrics and events:
|
||||
|
@ -24,7 +26,7 @@ If you're just getting started with Flux queries, check out the following:
|
|||
## Find how long a state persists
|
||||
|
||||
1. Use the [`stateDuration()`](/v2.0/reference/flux/stdlib/built-in/transformations/stateduration/) function to calculate how long a column value has remained the same value (or state). Include the following information:
|
||||
|
||||
|
||||
- **Column to search:** any tag key, tag value, field key, field value, or measurement.
|
||||
- **Value:** the value (or state) to search for in the specified column.
|
||||
- **State duration column:** a new column to store the state duration─the length of time that the specified value persists.
|
||||
|
@ -83,7 +85,7 @@ _time _value door_closed
|
|||
|
||||
```js
|
||||
|> stateCount
|
||||
(fn: (r) =>
|
||||
(fn: (r) =>
|
||||
r._column_to_search == "value_to_search_for",
|
||||
column: "state_count"`
|
||||
)
|
||||
|
@ -148,9 +150,9 @@ Detect state changes with the `monitor.stateChanges()` function. To use the `mon
|
|||
|
||||
{{< nav-icon "alerts" >}}
|
||||
|
||||
2. If you haven't already, [create a check](/v2.0/monitor-alert/checks/create/) that stores statuses (`CRIT`, `WARN`, `INFO`, `OK` or `ANY`) in the `_level` column. <!-- specify how to do this with monitor.check() function or in UI, with check threshold or deadman?
|
||||
2. If you haven't already, [create a check](/v2.0/monitor-alert/checks/create/) that stores statuses (`CRIT`, `WARN`, `INFO`, `OK` or `ANY`) in the `_level` column. <!-- specify how to do this with monitor.check() function or in UI, with check threshold or deadman?
|
||||
3. Import the InfluxDB `monitor` package.
|
||||
4. In your query, the specify the check. <!--can users specify a Flux query with the `monitoring` bucket and _level field without specifying the check? does importing the monitor package create the `monitoring` bucket?
|
||||
4. In your query, the specify the check. <!--can users specify a Flux query with the `monitoring` bucket and _level field without specifying the check? does importing the monitor package create the `monitoring` bucket?
|
||||
5. Use the `monitor.stateChanges()` function and include the following information:
|
||||
|
||||
- `fromLevel` (optional; by default, this is set to `any`)
|
|
@ -0,0 +1,163 @@
|
|||
---
|
||||
title: Find percentile and quantile values
|
||||
seotitle: Query percentile and quantile values in Flux
|
||||
list_title: Percentile & quantile
|
||||
description: >
|
||||
Use the `quantile()` function to return all values within the `q` quantile or
|
||||
percentile of input data.
|
||||
weight: 210
|
||||
menu:
|
||||
v2_0:
|
||||
parent: Query with Flux
|
||||
name: Query percentiles & quantiles
|
||||
v2.0/tags: [query, percentile, quantile]
|
||||
related:
|
||||
- /v2.0/query-data/flux/query-median/
|
||||
---
|
||||
|
||||
Use the [`quantile()` function](/v2.0/reference/flux/stdlib/built-in/transformations/aggregates/quantile/)
|
||||
to return a value representing the `q` quantile or percentile of input data.
|
||||
|
||||
## Percentile versus quantile
|
||||
Percentiles and quantiles are very similar, differing only in the number used to calculate return values.
|
||||
A percentile is calculated using numbers between `0` and `100`.
|
||||
A quantile is calculated using numbers between `0.0` and `1.0`.
|
||||
For example, the **`0.5` quantile** is the same as the **50th percentile**.
|
||||
|
||||
## Select a method for calculating the quantile
|
||||
Select one of the following methods to calculate the quantile:
|
||||
|
||||
- [estimate_tdigest](#estimate-tdigest)
|
||||
- [exact_mean](#exact-mean)
|
||||
- [exact_selector](#exact-selector)
|
||||
|
||||
### estimate_tdigest
|
||||
**(Default)** An aggregate method that uses a [t-digest data structure](https://github.com/tdunning/t-digest)
|
||||
to compute a quantile estimate on large data sources.
|
||||
Output tables consist of a single row containing the calculated quantile.
|
||||
|
||||
If calculating the `0.5` quantile or 50th percentile:
|
||||
|
||||
{{< flex >}}
|
||||
{{% flex-content %}}
|
||||
**Given the following input table:**
|
||||
|
||||
| _time | _value |
|
||||
| ----- |:------:|
|
||||
| 0001 | 1.0 |
|
||||
| 0002 | 1.0 |
|
||||
| 0003 | 2.0 |
|
||||
| 0004 | 3.0 |
|
||||
{{% /flex-content %}}
|
||||
{{% flex-content %}}
|
||||
**`estimate_tdigest` returns:**
|
||||
|
||||
| _value |
|
||||
|:------:|
|
||||
| 1.5 |
|
||||
{{% /flex-content %}}
|
||||
{{< /flex >}}
|
||||
|
||||
### exact_mean
|
||||
An aggregate method that takes the average of the two points closest to the quantile value.
|
||||
Output tables consist of a single row containing the calculated quantile.
|
||||
|
||||
If calculating the `0.5` quantile or 50th percentile:
|
||||
|
||||
{{< flex >}}
|
||||
{{% flex-content %}}
|
||||
**Given the following input table:**
|
||||
|
||||
| _time | _value |
|
||||
| ----- |:------:|
|
||||
| 0001 | 1.0 |
|
||||
| 0002 | 1.0 |
|
||||
| 0003 | 2.0 |
|
||||
| 0004 | 3.0 |
|
||||
{{% /flex-content %}}
|
||||
{{% flex-content %}}
|
||||
**`exact_mean` returns:**
|
||||
|
||||
| _value |
|
||||
|:------:|
|
||||
| 1.5 |
|
||||
{{% /flex-content %}}
|
||||
{{< /flex >}}
|
||||
|
||||
### exact_selector
|
||||
A selector method that returns the data point for which at least `q` points are less than.
|
||||
Output tables consist of a single row containing the calculated quantile.
|
||||
|
||||
If calculating the `0.5` quantile or 50th percentile:
|
||||
|
||||
{{< flex >}}
|
||||
{{% flex-content %}}
|
||||
**Given the following input table:**
|
||||
|
||||
| _time | _value |
|
||||
| ----- |:------:|
|
||||
| 0001 | 1.0 |
|
||||
| 0002 | 1.0 |
|
||||
| 0003 | 2.0 |
|
||||
| 0004 | 3.0 |
|
||||
{{% /flex-content %}}
|
||||
{{% flex-content %}}
|
||||
**`exact_selector` returns:**
|
||||
|
||||
| _time | _value |
|
||||
| ----- |:------:|
|
||||
| 0002 | 1.0 |
|
||||
{{% /flex-content %}}
|
||||
{{< /flex >}}
|
||||
|
||||
{{% note %}}
|
||||
The examples below use the [example data variable](/v2.0/query-data/flux/#example-data-variable).
|
||||
{{% /note %}}
|
||||
|
||||
## Find the value representing the 99th percentile
|
||||
Use the default method, `"estimate_tdigest"`, to return all rows in a table that
|
||||
contain values in the 99th percentile of data in the table.
|
||||
|
||||
```js
|
||||
data
|
||||
|> quantile(q: 0.99)
|
||||
```
|
||||
|
||||
## Find the average of values closest to the quantile
|
||||
Use the `exact_mean` method to return a single row per input table containing the
|
||||
average of the two values closest to the mathematical quantile of data in the table.
|
||||
For example, to calculate the `0.99` quantile:
|
||||
|
||||
```js
|
||||
data
|
||||
|> quantile(q: 0.99, method: "exact_mean")
|
||||
```
|
||||
|
||||
## Find the point with the quantile value
|
||||
Use the `exact_selector` method to return a single row per input table containing the
|
||||
value that `q * 100`% of values in the table are less than.
|
||||
For example, to calculate the `0.99` quantile:
|
||||
|
||||
```js
|
||||
data
|
||||
|> quantile(q: 0.99, method: "exact_selector")
|
||||
```
|
||||
|
||||
## Use quantile() with aggregateWindow()
|
||||
[`aggregateWindow()`](/v2.0/reference/flux/stdlib/built-in/transformations/aggregates/aggregatewindow/)
|
||||
segments data into windows of time, aggregates data in each window into a single
|
||||
point, and then removes the time-based segmentation.
|
||||
It is primarily used to [downsample data](/v2.0/process-data/common-tasks/downsample-data/).
|
||||
|
||||
To specify the [quantile calculation method](#quantile-calculation-methods) in
|
||||
`aggregateWindow()`, use the [full function syntax](/v2.0/reference/flux/stdlib/built-in/transformations/aggregates/aggregatewindow/#specify-parameters-of-the-aggregate-function):
|
||||
|
||||
```js
|
||||
data
|
||||
|> aggregateWindow(
|
||||
every: 5m,
|
||||
fn: (tables=<-, column) =>
|
||||
tables
|
||||
|> quantile(q: 0.99, method: "exact_selector")
|
||||
)
|
||||
```
|
|
@ -0,0 +1,67 @@
|
|||
---
|
||||
title: Query fields and tags
|
||||
seotitle: Query fields and tags in InfluxDB using Flux
|
||||
description: >
|
||||
Use the `filter()` function to query data based on fields, tags, or any other column value.
|
||||
`filter()` performs operations similar to the `SELECT` statement and the `WHERE`
|
||||
clause in InfluxQL and other SQL-like query languages.
|
||||
weight: 201
|
||||
menu:
|
||||
v2_0:
|
||||
parent: Query with Flux
|
||||
v2.0/tags: [query, select, where]
|
||||
---
|
||||
|
||||
Use the [`filter()` function](/v2.0/reference/flux/stdlib/built-in/transformations/filter/)
|
||||
to query data based on fields, tags, or any other column value.
|
||||
`filter()` performs operations similar to the `SELECT` statement and the `WHERE`
|
||||
clause in InfluxQL and other SQL-like query languages.
|
||||
|
||||
## The filter() function
|
||||
`filter()` has an `fn` parameter that expects a [predicate function](/v2.0/reference/glossary/#predicate-function),
|
||||
an anonymous function comprised of one or more [predicate expressions](/v2.0/reference/glossary/#predicate-expression).
|
||||
The predicate function evaluates each input row.
|
||||
Rows that evaluate to `true` are **included** in the output data.
|
||||
Rows that evaluate to `false` are **excluded** from the output data.
|
||||
|
||||
```js
|
||||
// ...
|
||||
|> filter(fn: (r) => r._measurement == "example-measurement" )
|
||||
```
|
||||
|
||||
The `fn` predicate function requires an `r` argument, which represents each row
|
||||
as `filter()` iterates over input data.
|
||||
Key-value pairs in the row object represent columns and their values.
|
||||
Use **dot notation** or **bracket notation** to reference specific column values in the predicate function.
|
||||
Use [logical operators](/v2.0/reference/flux/language/operators/#logical-operators)
|
||||
to chain multiple predicate expressions together.
|
||||
|
||||
```js
|
||||
// Row object
|
||||
r = {foo: "bar", baz: "quz"}
|
||||
|
||||
// Example predicate function
|
||||
(r) => r.foo == "bar" and r["baz"] == "quz"
|
||||
|
||||
// Evaluation results
|
||||
(r) => true and true
|
||||
```
|
||||
|
||||
## Filter by fields and tags
|
||||
The combination of [`from()`](/v2.0/reference/flux/stdlib/built-in/inputs/from),
|
||||
[`range()`](/v2.0/reference/flux/stdlib/built-in/transformations/range),
|
||||
and `filter()` represent the most basic Flux query:
|
||||
|
||||
1. Use `from()` to define your [bucket](/v2.0/reference/glossary/#bucket).
|
||||
2. Use `range()` to limit query results by time.
|
||||
3. Use `filter()` to identify what rows of data to output.
|
||||
|
||||
```js
|
||||
from(bucket: "example-bucket")
|
||||
|> range(start: -1h)
|
||||
|> filter(fn: (r) =>
|
||||
r._measurement == "example-measurement" and
|
||||
r._field == "example-field" and
|
||||
r.tag == "example-tag"
|
||||
)
|
||||
```
|
|
@ -1,12 +1,15 @@
|
|||
---
|
||||
title: Use regular expressions in Flux
|
||||
list_title: Use regular expressions
|
||||
description: This guide walks through using regular expressions in evaluation logic in Flux functions.
|
||||
v2.0/tags: [regex]
|
||||
menu:
|
||||
v2_0:
|
||||
name: Use regular expressions
|
||||
parent: How-to guides
|
||||
weight: 210
|
||||
parent: Query with Flux
|
||||
weight: 220
|
||||
aliases:
|
||||
- /v2.0/query-data/guides/regular-expressions/
|
||||
---
|
||||
|
||||
Regular expressions (regexes) are incredibly powerful when matching patterns in large collections of data.
|
|
@ -1,5 +1,6 @@
|
|||
---
|
||||
title: Extract scalar values in Flux
|
||||
list_title: Extract scalar values
|
||||
description: >
|
||||
Use Flux stream and table functions to extract scalar values from Flux query output.
|
||||
This lets you, for example, dynamically set variables using query results.
|
||||
|
@ -7,10 +8,12 @@ menu:
|
|||
v2_0:
|
||||
name: Extract scalar values
|
||||
parent: How-to guides
|
||||
weight: 210
|
||||
weight: 220
|
||||
v2.0/tags: [scalar]
|
||||
related:
|
||||
- /v2.0/reference/flux/stdlib/built-in/transformations/stream-table/
|
||||
aliases:
|
||||
- /v2.0/query-data/guides/scalar-values/
|
||||
---
|
||||
|
||||
Use Flux [stream and table functions](/v2.0/reference/flux/stdlib/built-in/transformations/stream-table/)
|
|
@ -1,6 +1,7 @@
|
|||
---
|
||||
title: Sort and limit data with Flux
|
||||
seotitle: Sort and limit data in InfluxDB with Flux
|
||||
list_title: Sort and limit data
|
||||
description: >
|
||||
This guide walks through sorting and limiting data with Flux and outlines how
|
||||
it shapes your data in the process.
|
||||
|
@ -8,8 +9,10 @@ v2.0/tags: [sort, limit]
|
|||
menu:
|
||||
v2_0:
|
||||
name: Sort and limit data
|
||||
parent: How-to guides
|
||||
weight: 206
|
||||
parent: Query with Flux
|
||||
weight: 203
|
||||
aliases:
|
||||
- /v2.0/query-data/guides/sort-limit/
|
||||
---
|
||||
|
||||
The [`sort()`function](/v2.0/reference/flux/stdlib/built-in/transformations/sort)
|
|
@ -7,8 +7,10 @@ description: >
|
|||
v2.0/tags: [query, flux, sql]
|
||||
menu:
|
||||
v2_0:
|
||||
parent: How-to guides
|
||||
weight: 207
|
||||
parent: Query with Flux
|
||||
weight: 220
|
||||
aliases:
|
||||
- /v2.0/query-data/guides/sql/
|
||||
---
|
||||
|
||||
The [Flux](/v2.0/reference/flux) `sql` package provides functions for working with SQL data sources.
|
|
@ -1,15 +1,18 @@
|
|||
---
|
||||
title: Window and aggregate data with Flux
|
||||
seotitle: Window and aggregate data in InfluxDB with Flux
|
||||
list_title: Window & aggregate data
|
||||
description: >
|
||||
This guide walks through windowing and aggregating data with Flux and outlines
|
||||
how it shapes your data in the process.
|
||||
menu:
|
||||
v2_0:
|
||||
name: Window and aggregate data
|
||||
parent: How-to guides
|
||||
weight: 202
|
||||
name: Window & aggregate data
|
||||
parent: Query with Flux
|
||||
weight: 204
|
||||
v2.0/tags: [flux, aggregates]
|
||||
aliases:
|
||||
- /v2.0/query-data/guides/window-aggregate/
|
||||
---
|
||||
|
||||
A common operation performed with time series data is grouping data into windows of time,
|
|
@ -1,14 +0,0 @@
|
|||
---
|
||||
title: Flux how-to guides
|
||||
description: Helpful guides that walk through both common and complex tasks and use cases for Flux.
|
||||
weight: 103
|
||||
v2.0/tags: [flux, query]
|
||||
menu:
|
||||
v2_0:
|
||||
name: How-to guides
|
||||
parent: Query data
|
||||
---
|
||||
|
||||
The following guides walk through common query uses cases.
|
||||
|
||||
{{< children >}}
|
|
@ -97,7 +97,7 @@ Function operators facilitate the creation of functions and control the flow of
|
|||
|
||||
---
|
||||
|
||||
_See [Custom functions](/v2.0/query-data/guides/custom-functions) for examples of function operators is use._
|
||||
_See [Custom functions](/v2.0/query-data/flux/custom-functions) for examples of function operators is use._
|
||||
|
||||
---
|
||||
|
||||
|
|
|
@ -708,6 +708,15 @@ A predicate expression compares two values and returns `true` or `false` based o
|
|||
the relationship between the two values.
|
||||
A predicate expression is comprised of a left operand, a comparison operator, and a right operand.
|
||||
|
||||
### predicate function
|
||||
A Flux predicate function is an anonymous function that returns `true` or `false`
|
||||
based on one or more [predicate expressions](#predicate-expression).
|
||||
|
||||
###### Example predicate function
|
||||
```js
|
||||
(r) => r.foo == "bar" and r.baz != "quz"
|
||||
```
|
||||
|
||||
### process
|
||||
|
||||
A set of predetermined rules.
|
||||
|
@ -919,7 +928,7 @@ Related entries: [bin](#bin)
|
|||
### step-plot
|
||||
|
||||
In InfluxDB 1.x, a [step-plot graph](https://docs.influxdata.com/chronograf/v1.7/guides/visualization-types/#step-plot-graph) displays time series data in a staircase graph.
|
||||
In InfluxDB 2.0, generate a similar graph using the step interpolation option for [line graphs](https://v2.docs.influxdata.com/v2.0/visualize-data/visualization-types/graph/#options).
|
||||
In InfluxDB 2.0, generate a similar graph using the step interpolation option for [line graphs](/v2.0/visualize-data/visualization-types/graph/#options).
|
||||
|
||||
### stream
|
||||
|
||||
|
@ -988,7 +997,7 @@ Related entries: [function](#function)
|
|||
|
||||
A plugin-driven agent that collects, processes, aggregates, and writes metrics.
|
||||
|
||||
Related entries: [Automatically configure Telegraf](https://v2.docs.influxdata.com/v2.0/write-data/use-telegraf/auto-config/), [Manually configure Telegraf](https://v2.docs.influxdata.com/v2.0/write-data/use-telegraf/manual-config/), [Telegraf plugins](https://v2.docs.influxdata.com/v2.0/reference/telegraf-plugins/), [Use Telegraf to collect data](https://v2.docs.influxdata.com/v2.0/write-data/use-telegraf/), [View a Telegraf configuration](https://v2.docs.influxdata.com/v2.0/write-data/use-telegraf/auto-config/view-telegraf-config/)
|
||||
Related entries: [Automatically configure Telegraf](/v2.0/write-data/use-telegraf/auto-config/), [Manually configure Telegraf](/v2.0/write-data/use-telegraf/manual-config/), [Telegraf plugins](/v2.0/reference/telegraf-plugins/), [Use Telegraf to collect data](/v2.0/write-data/use-telegraf/), [View a Telegraf configuration](/v2.0/write-data/use-telegraf/auto-config/view-telegraf-config/)
|
||||
|
||||
### time (data type)
|
||||
|
||||
|
@ -1017,12 +1026,12 @@ Related entries: [point](#point)
|
|||
|
||||
Tokens verify user and organization permissions in InfluxDB.
|
||||
|
||||
Related entries: [Create a token](https://v2.docs.influxdata.com/v2.0/security/tokens/create-token/).
|
||||
Related entries: [Create a token](/v2.0/security/tokens/create-token/).
|
||||
|
||||
### tracing
|
||||
|
||||
By default, tracing is disabled in InfluxDB.
|
||||
To enable tracing or set other InfluxDB configuration options, see [InfluxDB configuration options](https://v2.docs.influxdata.com/v2.0/reference/config-options/).
|
||||
To enable tracing or set other InfluxDB configuration options, see [InfluxDB configuration options](/v2.0/reference/config-options/).
|
||||
|
||||
### transformation
|
||||
|
||||
|
@ -1106,4 +1115,4 @@ Related entries: [tsm](#tsm-time-structured-merge-tree)
|
|||
### windowing
|
||||
|
||||
Grouping data based on specified time intervals.
|
||||
For information about how to window in Flux, see [Window and aggregate data with Flux](https://v2.docs.influxdata.com/v2.0/query-data/guides/window-aggregate/).
|
||||
For information about how to window in Flux, see [Window and aggregate data with Flux](/v2.0/query-data/flux/window-aggregate/).
|
||||
|
|
|
@ -162,11 +162,11 @@ A **point** includes the series key, a field value, and a timestamp. For example
|
|||
|
||||
## Bucket
|
||||
|
||||
All InfluxDB data is stored in a bucket. A **bucket** combines the concept of a database and a retention period (the duration of time that each data point persists). A bucket belongs to an organization. For more information about buckets, see [Manage buckets](https://v2.docs.influxdata.com/v2.0/organizations/buckets/).
|
||||
All InfluxDB data is stored in a bucket. A **bucket** combines the concept of a database and a retention period (the duration of time that each data point persists). A bucket belongs to an organization. For more information about buckets, see [Manage buckets](/v2.0/organizations/buckets/).
|
||||
|
||||
## Organization
|
||||
|
||||
An InfluxDB **organization** is a workspace for a group of [users](/v2.0/users/). All [dashboards](/v2.0/visualize-data/dashboards/), [tasks](/v2.0/process-data/), buckets, and users belong to an organization. For more information about organizations, see [Manage organizations](https://v2.docs.influxdata.com/v2.0/organizations/).
|
||||
An InfluxDB **organization** is a workspace for a group of [users](/v2.0/users/). All [dashboards](/v2.0/visualize-data/dashboards/), [tasks](/v2.0/process-data/), buckets, and users belong to an organization. For more information about organizations, see [Manage organizations](/v2.0/organizations/).
|
||||
|
||||
If you're just starting out, we recommend taking a look at the following guides:
|
||||
|
||||
|
|
|
@ -16,7 +16,7 @@ InfluxDB 2.0 uses the following columnar table structure to store data:
|
|||
- **Header row:** describes the data labels for each column in a row.
|
||||
- **Data columns:** include the following columns: annotation, result, and table.
|
||||
- **Data rows:** all rows that contain time series data. For details about the type of data stored in InfluxDB, see [InfluxDB data elements](/v2.0/reference/key-concepts/data-elements/).
|
||||
- **Group keys** determine the contents of output tables in Flux by grouping records that share common values in specified columns. Learn more about [grouping your data with Flux](/v2.0/query-data/guides/group-data/).
|
||||
- **Group keys** determine the contents of output tables in Flux by grouping records that share common values in specified columns. Learn more about [grouping your data with Flux](/v2.0/query-data/flux/group-data/).
|
||||
|
||||
For specifications on the InfluxDB 2.0 table structure, see [Tables](/v2.0/reference/syntax/annotated-csv/#tables).
|
||||
|
||||
|
|
|
@ -34,7 +34,7 @@ See [Get started with Flux](/v2.0/query-data/get-started) to learn more about Fl
|
|||
- Select a bucket to define your data source.
|
||||
- Edit your time range with the [time range option](/select-time-range/) in the dropdown menu.
|
||||
- Add filters to narrow your data by selecting attributes or columns in the dropdown menu.
|
||||
- Select **Group** from the **Filter** dropdown menu to group data into tables. For more about how grouping data in Flux works, see [Group data](/v2.0/query-data/guides/group-data/).
|
||||
- Select **Group** from the **Filter** dropdown menu to group data into tables. For more about how grouping data in Flux works, see [Group data](/v2.0/query-data/flux/group-data/).
|
||||
3. Alternatively, click **Script Editor** to manually edit the query.
|
||||
To switch back to the query builder, click **Query Builder**. Note that your updates from the Script Editor will not be saved.
|
||||
4. Use the **Functions** list to review the available Flux functions.
|
||||
|
|
|
@ -54,7 +54,7 @@ List all unique tag values for a specific tag in a specified bucket.
|
|||
The example below lists all unique values of the `host` tag.
|
||||
|
||||
_**Flux package:** [InfluxDB v1](/v2.0/reference/flux/stdlib/influxdb-v1/)_
|
||||
_**Flux functions:** [v1.measurements()](/v2.0/reference/flux/stdlib/influxdb-v1/measurements/)_
|
||||
_**Flux functions:** [v1.tagValues()](/v2.0/reference/flux/stdlib/influxdb-v1/tagvalues/)_
|
||||
|
||||
```js
|
||||
import "influxdata/influxdb/v1"
|
||||
|
|
|
@ -0,0 +1,5 @@
|
|||
{{ $width := .Get 0 | default "half" }}
|
||||
{{ $_hugo_config := `{ "version": 1 }` }}
|
||||
<div class="flex-container {{ $width }}">
|
||||
{{ .Inner }}
|
||||
</div>
|
|
@ -0,0 +1,4 @@
|
|||
{{ $_hugo_config := `{ "version": 1 }` }}
|
||||
<div class="flex-wrapper">
|
||||
{{ .Inner }}
|
||||
</div>
|
Loading…
Reference in New Issue