core/homeassistant/components/statistics/sensor.py

1104 lines
37 KiB
Python

"""Support for statistics for sensor values."""
from __future__ import annotations
from collections import deque
from collections.abc import Callable, Mapping
import contextlib
from datetime import datetime, timedelta
import logging
import math
import statistics
import time
from typing import Any, cast
import voluptuous as vol
from homeassistant.components.binary_sensor import DOMAIN as BINARY_SENSOR_DOMAIN
from homeassistant.components.recorder import get_instance, history
from homeassistant.components.sensor import (
DEVICE_CLASS_STATE_CLASSES,
DEVICE_CLASS_UNITS,
PLATFORM_SCHEMA as SENSOR_PLATFORM_SCHEMA,
SensorDeviceClass,
SensorEntity,
SensorStateClass,
)
from homeassistant.config_entries import ConfigEntry
from homeassistant.const import (
ATTR_DEVICE_CLASS,
ATTR_UNIT_OF_MEASUREMENT,
CONF_ENTITY_ID,
CONF_NAME,
CONF_UNIQUE_ID,
PERCENTAGE,
STATE_UNAVAILABLE,
STATE_UNKNOWN,
)
from homeassistant.core import (
CALLBACK_TYPE,
Event,
EventStateChangedData,
EventStateReportedData,
HomeAssistant,
State,
callback,
split_entity_id,
)
from homeassistant.helpers import config_validation as cv
from homeassistant.helpers.device import async_device_info_to_link_from_entity
from homeassistant.helpers.entity_platform import AddEntitiesCallback
from homeassistant.helpers.event import (
async_track_point_in_utc_time,
async_track_state_change_event,
async_track_state_report_event,
)
from homeassistant.helpers.reload import async_setup_reload_service
from homeassistant.helpers.typing import ConfigType, DiscoveryInfoType
from homeassistant.util import dt as dt_util
from homeassistant.util.enum import try_parse_enum
from . import DOMAIN, PLATFORMS
_LOGGER = logging.getLogger(__name__)
# Stats for attributes only
STAT_AGE_COVERAGE_RATIO = "age_coverage_ratio"
STAT_BUFFER_USAGE_RATIO = "buffer_usage_ratio"
STAT_SOURCE_VALUE_VALID = "source_value_valid"
# All sensor statistics
STAT_AVERAGE_LINEAR = "average_linear"
STAT_AVERAGE_STEP = "average_step"
STAT_AVERAGE_TIMELESS = "average_timeless"
STAT_CHANGE = "change"
STAT_CHANGE_SAMPLE = "change_sample"
STAT_CHANGE_SECOND = "change_second"
STAT_COUNT = "count"
STAT_COUNT_BINARY_ON = "count_on"
STAT_COUNT_BINARY_OFF = "count_off"
STAT_DATETIME_NEWEST = "datetime_newest"
STAT_DATETIME_OLDEST = "datetime_oldest"
STAT_DATETIME_VALUE_MAX = "datetime_value_max"
STAT_DATETIME_VALUE_MIN = "datetime_value_min"
STAT_DISTANCE_95P = "distance_95_percent_of_values"
STAT_DISTANCE_99P = "distance_99_percent_of_values"
STAT_DISTANCE_ABSOLUTE = "distance_absolute"
STAT_MEAN = "mean"
STAT_MEAN_CIRCULAR = "mean_circular"
STAT_MEDIAN = "median"
STAT_NOISINESS = "noisiness"
STAT_PERCENTILE = "percentile"
STAT_STANDARD_DEVIATION = "standard_deviation"
STAT_SUM = "sum"
STAT_SUM_DIFFERENCES = "sum_differences"
STAT_SUM_DIFFERENCES_NONNEGATIVE = "sum_differences_nonnegative"
STAT_TOTAL = "total"
STAT_VALUE_MAX = "value_max"
STAT_VALUE_MIN = "value_min"
STAT_VARIANCE = "variance"
def _callable_characteristic_fn(
characteristic: str, binary: bool
) -> Callable[[deque[bool | float], deque[float], int], float | int | datetime | None]:
"""Return the function callable of one characteristic function."""
Callable[[deque[bool | float], deque[datetime], int], datetime | int | float | None]
if binary:
return STATS_BINARY_SUPPORT[characteristic]
return STATS_NUMERIC_SUPPORT[characteristic]
# Statistics for numeric sensor
def _stat_average_linear(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) == 1:
return states[0]
if len(states) >= 2:
area: float = 0
for i in range(1, len(states)):
area += 0.5 * (states[i] + states[i - 1]) * (ages[i] - ages[i - 1])
age_range_seconds = ages[-1] - ages[0]
return area / age_range_seconds
return None
def _stat_average_step(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) == 1:
return states[0]
if len(states) >= 2:
area: float = 0
for i in range(1, len(states)):
area += states[i - 1] * (ages[i] - ages[i - 1])
age_range_seconds = ages[-1] - ages[0]
return area / age_range_seconds
return None
def _stat_average_timeless(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
return _stat_mean(states, ages, percentile)
def _stat_change(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) > 0:
return states[-1] - states[0]
return None
def _stat_change_sample(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) > 1:
return (states[-1] - states[0]) / (len(states) - 1)
return None
def _stat_change_second(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) > 1:
age_range_seconds = ages[-1] - ages[0]
if age_range_seconds > 0:
return (states[-1] - states[0]) / age_range_seconds
return None
def _stat_count(
states: deque[bool | float], ages: deque[float], percentile: int
) -> int | None:
return len(states)
def _stat_datetime_newest(
states: deque[bool | float], ages: deque[float], percentile: int
) -> datetime | None:
if len(states) > 0:
return dt_util.utc_from_timestamp(ages[-1])
return None
def _stat_datetime_oldest(
states: deque[bool | float], ages: deque[float], percentile: int
) -> datetime | None:
if len(states) > 0:
return dt_util.utc_from_timestamp(ages[0])
return None
def _stat_datetime_value_max(
states: deque[bool | float], ages: deque[float], percentile: int
) -> datetime | None:
if len(states) > 0:
return dt_util.utc_from_timestamp(ages[states.index(max(states))])
return None
def _stat_datetime_value_min(
states: deque[bool | float], ages: deque[float], percentile: int
) -> datetime | None:
if len(states) > 0:
return dt_util.utc_from_timestamp(ages[states.index(min(states))])
return None
def _stat_distance_95_percent_of_values(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) >= 1:
return (
2 * 1.96 * cast(float, _stat_standard_deviation(states, ages, percentile))
)
return None
def _stat_distance_99_percent_of_values(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) >= 1:
return (
2 * 2.58 * cast(float, _stat_standard_deviation(states, ages, percentile))
)
return None
def _stat_distance_absolute(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) > 0:
return max(states) - min(states)
return None
def _stat_mean(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) > 0:
return statistics.mean(states)
return None
def _stat_mean_circular(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) > 0:
sin_sum = sum(math.sin(math.radians(x)) for x in states)
cos_sum = sum(math.cos(math.radians(x)) for x in states)
return (math.degrees(math.atan2(sin_sum, cos_sum)) + 360) % 360
return None
def _stat_median(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) > 0:
return statistics.median(states)
return None
def _stat_noisiness(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) == 1:
return 0.0
if len(states) >= 2:
return cast(float, _stat_sum_differences(states, ages, percentile)) / (
len(states) - 1
)
return None
def _stat_percentile(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) == 1:
return states[0]
if len(states) >= 2:
percentiles = statistics.quantiles(states, n=100, method="exclusive")
return percentiles[percentile - 1]
return None
def _stat_standard_deviation(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) == 1:
return 0.0
if len(states) >= 2:
return statistics.stdev(states)
return None
def _stat_sum(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) > 0:
return sum(states)
return None
def _stat_sum_differences(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) == 1:
return 0.0
if len(states) >= 2:
return sum(
abs(j - i) for i, j in zip(list(states), list(states)[1:], strict=False)
)
return None
def _stat_sum_differences_nonnegative(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) == 1:
return 0.0
if len(states) >= 2:
return sum(
(j - i if j >= i else j - 0)
for i, j in zip(list(states), list(states)[1:], strict=False)
)
return None
def _stat_total(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
return _stat_sum(states, ages, percentile)
def _stat_value_max(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) > 0:
return max(states)
return None
def _stat_value_min(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) > 0:
return min(states)
return None
def _stat_variance(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) == 1:
return 0.0
if len(states) >= 2:
return statistics.variance(states)
return None
# Statistics for binary sensor
def _stat_binary_average_step(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) == 1:
return 100.0 * int(states[0] is True)
if len(states) >= 2:
on_seconds: float = 0
for i in range(1, len(states)):
if states[i - 1] is True:
on_seconds += ages[i] - ages[i - 1]
age_range_seconds = ages[-1] - ages[0]
return 100 / age_range_seconds * on_seconds
return None
def _stat_binary_average_timeless(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
return _stat_binary_mean(states, ages, percentile)
def _stat_binary_count(
states: deque[bool | float], ages: deque[float], percentile: int
) -> int | None:
return len(states)
def _stat_binary_count_on(
states: deque[bool | float], ages: deque[float], percentile: int
) -> int | None:
return states.count(True)
def _stat_binary_count_off(
states: deque[bool | float], ages: deque[float], percentile: int
) -> int | None:
return states.count(False)
def _stat_binary_datetime_newest(
states: deque[bool | float], ages: deque[float], percentile: int
) -> datetime | None:
return _stat_datetime_newest(states, ages, percentile)
def _stat_binary_datetime_oldest(
states: deque[bool | float], ages: deque[float], percentile: int
) -> datetime | None:
return _stat_datetime_oldest(states, ages, percentile)
def _stat_binary_mean(
states: deque[bool | float], ages: deque[float], percentile: int
) -> float | None:
if len(states) > 0:
return 100.0 / len(states) * states.count(True)
return None
# Statistics supported by a sensor source (numeric)
STATS_NUMERIC_SUPPORT = {
STAT_AVERAGE_LINEAR: _stat_average_linear,
STAT_AVERAGE_STEP: _stat_average_step,
STAT_AVERAGE_TIMELESS: _stat_average_timeless,
STAT_CHANGE_SAMPLE: _stat_change_sample,
STAT_CHANGE_SECOND: _stat_change_second,
STAT_CHANGE: _stat_change,
STAT_COUNT: _stat_count,
STAT_DATETIME_NEWEST: _stat_datetime_newest,
STAT_DATETIME_OLDEST: _stat_datetime_oldest,
STAT_DATETIME_VALUE_MAX: _stat_datetime_value_max,
STAT_DATETIME_VALUE_MIN: _stat_datetime_value_min,
STAT_DISTANCE_95P: _stat_distance_95_percent_of_values,
STAT_DISTANCE_99P: _stat_distance_99_percent_of_values,
STAT_DISTANCE_ABSOLUTE: _stat_distance_absolute,
STAT_MEAN: _stat_mean,
STAT_MEAN_CIRCULAR: _stat_mean_circular,
STAT_MEDIAN: _stat_median,
STAT_NOISINESS: _stat_noisiness,
STAT_PERCENTILE: _stat_percentile,
STAT_STANDARD_DEVIATION: _stat_standard_deviation,
STAT_SUM: _stat_sum,
STAT_SUM_DIFFERENCES: _stat_sum_differences,
STAT_SUM_DIFFERENCES_NONNEGATIVE: _stat_sum_differences_nonnegative,
STAT_TOTAL: _stat_total,
STAT_VALUE_MAX: _stat_value_max,
STAT_VALUE_MIN: _stat_value_min,
STAT_VARIANCE: _stat_variance,
}
# Statistics supported by a binary_sensor source
STATS_BINARY_SUPPORT = {
STAT_AVERAGE_STEP: _stat_binary_average_step,
STAT_AVERAGE_TIMELESS: _stat_binary_average_timeless,
STAT_COUNT: _stat_binary_count,
STAT_COUNT_BINARY_ON: _stat_binary_count_on,
STAT_COUNT_BINARY_OFF: _stat_binary_count_off,
STAT_DATETIME_NEWEST: _stat_binary_datetime_newest,
STAT_DATETIME_OLDEST: _stat_binary_datetime_oldest,
STAT_MEAN: _stat_binary_mean,
}
STATS_NOT_A_NUMBER = {
STAT_DATETIME_NEWEST,
STAT_DATETIME_OLDEST,
STAT_DATETIME_VALUE_MAX,
STAT_DATETIME_VALUE_MIN,
}
STATS_DATETIME = {
STAT_DATETIME_NEWEST,
STAT_DATETIME_OLDEST,
STAT_DATETIME_VALUE_MAX,
STAT_DATETIME_VALUE_MIN,
}
# Statistics which retain the unit of the source entity
STATS_NUMERIC_RETAIN_UNIT = {
STAT_AVERAGE_LINEAR,
STAT_AVERAGE_STEP,
STAT_AVERAGE_TIMELESS,
STAT_CHANGE,
STAT_DISTANCE_95P,
STAT_DISTANCE_99P,
STAT_DISTANCE_ABSOLUTE,
STAT_MEAN,
STAT_MEAN_CIRCULAR,
STAT_MEDIAN,
STAT_NOISINESS,
STAT_PERCENTILE,
STAT_STANDARD_DEVIATION,
STAT_SUM,
STAT_SUM_DIFFERENCES,
STAT_SUM_DIFFERENCES_NONNEGATIVE,
STAT_TOTAL,
STAT_VALUE_MAX,
STAT_VALUE_MIN,
}
# Statistics which produce percentage ratio from binary_sensor source entity
STATS_BINARY_PERCENTAGE = {
STAT_AVERAGE_STEP,
STAT_AVERAGE_TIMELESS,
STAT_MEAN,
}
CONF_STATE_CHARACTERISTIC = "state_characteristic"
CONF_SAMPLES_MAX_BUFFER_SIZE = "sampling_size"
CONF_MAX_AGE = "max_age"
CONF_KEEP_LAST_SAMPLE = "keep_last_sample"
CONF_PRECISION = "precision"
CONF_PERCENTILE = "percentile"
DEFAULT_NAME = "Statistical characteristic"
DEFAULT_PRECISION = 2
ICON = "mdi:calculator"
def valid_state_characteristic_configuration(config: dict[str, Any]) -> dict[str, Any]:
"""Validate that the characteristic selected is valid for the source sensor type, throw if it isn't."""
is_binary = split_entity_id(config[CONF_ENTITY_ID])[0] == BINARY_SENSOR_DOMAIN
characteristic = cast(str, config[CONF_STATE_CHARACTERISTIC])
if (is_binary and characteristic not in STATS_BINARY_SUPPORT) or (
not is_binary and characteristic not in STATS_NUMERIC_SUPPORT
):
raise vol.ValueInvalid(
f"The configured characteristic '{characteristic}' is not supported "
"for the configured source sensor"
)
return config
def valid_boundary_configuration(config: dict[str, Any]) -> dict[str, Any]:
"""Validate that max_age, sampling_size, or both are provided."""
if (
config.get(CONF_SAMPLES_MAX_BUFFER_SIZE) is None
and config.get(CONF_MAX_AGE) is None
):
raise vol.RequiredFieldInvalid(
"The sensor configuration must provide 'max_age' and/or 'sampling_size'"
)
return config
def valid_keep_last_sample(config: dict[str, Any]) -> dict[str, Any]:
"""Validate that if keep_last_sample is set, max_age must also be set."""
if config.get(CONF_KEEP_LAST_SAMPLE) is True and config.get(CONF_MAX_AGE) is None:
raise vol.RequiredFieldInvalid(
"The sensor configuration must provide 'max_age' if 'keep_last_sample' is True"
)
return config
_PLATFORM_SCHEMA_BASE = SENSOR_PLATFORM_SCHEMA.extend(
{
vol.Required(CONF_ENTITY_ID): cv.entity_id,
vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string,
vol.Optional(CONF_UNIQUE_ID): cv.string,
vol.Required(CONF_STATE_CHARACTERISTIC): cv.string,
vol.Optional(CONF_SAMPLES_MAX_BUFFER_SIZE): vol.All(
vol.Coerce(int), vol.Range(min=1)
),
vol.Optional(CONF_MAX_AGE): cv.time_period,
vol.Optional(CONF_KEEP_LAST_SAMPLE, default=False): cv.boolean,
vol.Optional(CONF_PRECISION, default=DEFAULT_PRECISION): vol.Coerce(int),
vol.Optional(CONF_PERCENTILE, default=50): vol.All(
vol.Coerce(int), vol.Range(min=1, max=99)
),
}
)
PLATFORM_SCHEMA = vol.All(
_PLATFORM_SCHEMA_BASE,
valid_state_characteristic_configuration,
valid_boundary_configuration,
valid_keep_last_sample,
)
async def async_setup_platform(
hass: HomeAssistant,
config: ConfigType,
async_add_entities: AddEntitiesCallback,
discovery_info: DiscoveryInfoType | None = None,
) -> None:
"""Set up the Statistics sensor."""
await async_setup_reload_service(hass, DOMAIN, PLATFORMS)
async_add_entities(
new_entities=[
StatisticsSensor(
hass=hass,
source_entity_id=config[CONF_ENTITY_ID],
name=config[CONF_NAME],
unique_id=config.get(CONF_UNIQUE_ID),
state_characteristic=config[CONF_STATE_CHARACTERISTIC],
samples_max_buffer_size=config.get(CONF_SAMPLES_MAX_BUFFER_SIZE),
samples_max_age=config.get(CONF_MAX_AGE),
samples_keep_last=config[CONF_KEEP_LAST_SAMPLE],
precision=config[CONF_PRECISION],
percentile=config[CONF_PERCENTILE],
)
],
update_before_add=True,
)
async def async_setup_entry(
hass: HomeAssistant,
entry: ConfigEntry,
async_add_entities: AddEntitiesCallback,
) -> None:
"""Set up the Statistics sensor entry."""
sampling_size = entry.options.get(CONF_SAMPLES_MAX_BUFFER_SIZE)
if sampling_size:
sampling_size = int(sampling_size)
max_age = None
if max_age := entry.options.get(CONF_MAX_AGE):
max_age = timedelta(**max_age)
async_add_entities(
[
StatisticsSensor(
hass=hass,
source_entity_id=entry.options[CONF_ENTITY_ID],
name=entry.options[CONF_NAME],
unique_id=entry.entry_id,
state_characteristic=entry.options[CONF_STATE_CHARACTERISTIC],
samples_max_buffer_size=sampling_size,
samples_max_age=max_age,
samples_keep_last=entry.options[CONF_KEEP_LAST_SAMPLE],
precision=int(entry.options[CONF_PRECISION]),
percentile=int(entry.options[CONF_PERCENTILE]),
)
],
True,
)
class StatisticsSensor(SensorEntity):
"""Representation of a Statistics sensor."""
_attr_should_poll = False
_attr_icon = ICON
def __init__(
self,
hass: HomeAssistant,
source_entity_id: str,
name: str,
unique_id: str | None,
state_characteristic: str,
samples_max_buffer_size: int | None,
samples_max_age: timedelta | None,
samples_keep_last: bool,
precision: int,
percentile: int,
) -> None:
"""Initialize the Statistics sensor."""
self._attr_name: str = name
self._attr_unique_id: str | None = unique_id
self._source_entity_id: str = source_entity_id
self._attr_device_info = async_device_info_to_link_from_entity(
hass,
source_entity_id,
)
self.is_binary: bool = (
split_entity_id(self._source_entity_id)[0] == BINARY_SENSOR_DOMAIN
)
self._state_characteristic: str = state_characteristic
self._samples_max_buffer_size: int | None = samples_max_buffer_size
self._samples_max_age: float | None = (
samples_max_age.total_seconds() if samples_max_age else None
)
self.samples_keep_last: bool = samples_keep_last
self._precision: int = precision
self._percentile: int = percentile
self._attr_available: bool = False
self.states: deque[float | bool] = deque(maxlen=samples_max_buffer_size)
self.ages: deque[float] = deque(maxlen=samples_max_buffer_size)
self._attr_extra_state_attributes = {}
self._state_characteristic_fn: Callable[
[deque[bool | float], deque[float], int],
float | int | datetime | None,
] = _callable_characteristic_fn(state_characteristic, self.is_binary)
self._update_listener: CALLBACK_TYPE | None = None
self._preview_callback: Callable[[str, Mapping[str, Any]], None] | None = None
async def async_start_preview(
self,
preview_callback: Callable[[str, Mapping[str, Any]], None],
) -> CALLBACK_TYPE:
"""Render a preview."""
# abort early if there is no entity_id
# as without we can't track changes
# or either size or max_age is not set
if not self._source_entity_id or (
self._samples_max_buffer_size is None and self._samples_max_age is None
):
self._attr_available = False
calculated_state = self._async_calculate_state()
preview_callback(calculated_state.state, calculated_state.attributes)
return self._call_on_remove_callbacks
self._preview_callback = preview_callback
await self._async_stats_sensor_startup()
return self._call_on_remove_callbacks
def _async_handle_new_state(
self,
reported_state: State | None,
) -> None:
"""Handle the sensor state changes."""
if (new_state := reported_state) is None:
return
self._add_state_to_queue(new_state)
self._async_purge_update_and_schedule()
if self._preview_callback:
calculated_state = self._async_calculate_state()
self._preview_callback(calculated_state.state, calculated_state.attributes)
# only write state to the state machine if we are not in preview mode
if not self._preview_callback:
self.async_write_ha_state()
@callback
def _async_stats_sensor_state_change_listener(
self,
event: Event[EventStateChangedData],
) -> None:
self._async_handle_new_state(event.data["new_state"])
@callback
def _async_stats_sensor_state_report_listener(
self,
event: Event[EventStateReportedData],
) -> None:
self._async_handle_new_state(event.data["new_state"])
async def _async_stats_sensor_startup(self) -> None:
"""Add listener and get recorded state.
Historical data needs to be loaded from the database first before we
can start accepting new incoming changes.
This is needed to ensure that the buffer is properly sorted by time.
"""
_LOGGER.debug("Startup for %s", self.entity_id)
if "recorder" in self.hass.config.components:
await self._initialize_from_database()
self.async_on_remove(
async_track_state_change_event(
self.hass,
[self._source_entity_id],
self._async_stats_sensor_state_change_listener,
)
)
self.async_on_remove(
async_track_state_report_event(
self.hass,
[self._source_entity_id],
self._async_stats_sensor_state_report_listener,
)
)
async def async_added_to_hass(self) -> None:
"""Register callbacks."""
await self._async_stats_sensor_startup()
def _add_state_to_queue(self, new_state: State) -> None:
"""Add the state to the queue."""
# Attention: it is not safe to store the new_state object,
# since the "last_reported" value will be updated over time.
# Here we make a copy the current value, which is okay.
self._attr_available = new_state.state != STATE_UNAVAILABLE
if new_state.state == STATE_UNAVAILABLE:
self._attr_extra_state_attributes[STAT_SOURCE_VALUE_VALID] = None
return
if new_state.state in (STATE_UNKNOWN, None, ""):
self._attr_extra_state_attributes[STAT_SOURCE_VALUE_VALID] = False
return
try:
if self.is_binary:
assert new_state.state in ("on", "off")
self.states.append(new_state.state == "on")
else:
self.states.append(float(new_state.state))
self.ages.append(new_state.last_reported_timestamp)
self._attr_extra_state_attributes[STAT_SOURCE_VALUE_VALID] = True
except ValueError:
self._attr_extra_state_attributes[STAT_SOURCE_VALUE_VALID] = False
_LOGGER.error(
"%s: parsing error. Expected number or binary state, but received '%s'",
self.entity_id,
new_state.state,
)
return
self._calculate_state_attributes(new_state)
def _calculate_state_attributes(self, new_state: State) -> None:
"""Set the entity state attributes."""
self._attr_native_unit_of_measurement = self._calculate_unit_of_measurement(
new_state
)
self._attr_device_class = self._calculate_device_class(
new_state, self._attr_native_unit_of_measurement
)
self._attr_state_class = self._calculate_state_class(new_state)
def _calculate_unit_of_measurement(self, new_state: State) -> str | None:
"""Return the calculated unit of measurement.
The unit of measurement is that of the source sensor, adjusted based on the
state characteristics.
"""
base_unit: str | None = new_state.attributes.get(ATTR_UNIT_OF_MEASUREMENT)
unit: str | None = None
stat_type = self._state_characteristic
if self.is_binary and stat_type in STATS_BINARY_PERCENTAGE:
unit = PERCENTAGE
elif not base_unit:
unit = None
elif stat_type in STATS_NUMERIC_RETAIN_UNIT:
unit = base_unit
elif stat_type in STATS_NOT_A_NUMBER or stat_type in (
STAT_COUNT,
STAT_COUNT_BINARY_ON,
STAT_COUNT_BINARY_OFF,
):
unit = None
elif stat_type == STAT_VARIANCE:
unit = base_unit + "²"
elif stat_type == STAT_CHANGE_SAMPLE:
unit = base_unit + "/sample"
elif stat_type == STAT_CHANGE_SECOND:
unit = base_unit + "/s"
return unit
def _calculate_device_class(
self, new_state: State, unit: str | None
) -> SensorDeviceClass | None:
"""Return the calculated device class.
The device class is calculated based on the state characteristics,
the source device class and the unit of measurement is
in the device class units list.
"""
device_class: SensorDeviceClass | None = None
stat_type = self._state_characteristic
if stat_type in STATS_DATETIME:
return SensorDeviceClass.TIMESTAMP
if stat_type in STATS_NUMERIC_RETAIN_UNIT:
device_class = new_state.attributes.get(ATTR_DEVICE_CLASS)
if device_class is None:
return None
if (
sensor_device_class := try_parse_enum(SensorDeviceClass, device_class)
) is None:
return None
if (
sensor_device_class
and (
sensor_state_classes := DEVICE_CLASS_STATE_CLASSES.get(
sensor_device_class
)
)
and sensor_state_classes
and SensorStateClass.MEASUREMENT not in sensor_state_classes
):
return None
if device_class not in DEVICE_CLASS_UNITS:
return None
if (
device_class in DEVICE_CLASS_UNITS
and unit not in DEVICE_CLASS_UNITS[device_class]
):
return None
return device_class
def _calculate_state_class(self, new_state: State) -> SensorStateClass | None:
"""Return the calculated state class.
Will be None if the characteristics is not numerical, otherwise
SensorStateClass.MEASUREMENT.
"""
if self._state_characteristic in STATS_NOT_A_NUMBER:
return None
return SensorStateClass.MEASUREMENT
def _purge_old_states(self, max_age: float) -> None:
"""Remove states which are older than a given age."""
now_timestamp = time.time()
debug = _LOGGER.isEnabledFor(logging.DEBUG)
if debug:
_LOGGER.debug(
"%s: purging records older then %s(%s)(keep_last_sample: %s)",
self.entity_id,
dt_util.as_local(dt_util.utc_from_timestamp(now_timestamp - max_age)),
self._samples_max_age,
self.samples_keep_last,
)
while self.ages and (now_timestamp - self.ages[0]) > max_age:
if self.samples_keep_last and len(self.ages) == 1:
# Under normal circumstance this will not be executed, as a purge will not
# be scheduled for the last value if samples_keep_last is enabled.
# If this happens to be called outside normal scheduling logic or a
# source sensor update, this ensures the last value is preserved.
if debug:
_LOGGER.debug(
"%s: preserving expired record with datetime %s(%s)",
self.entity_id,
dt_util.as_local(dt_util.utc_from_timestamp(self.ages[0])),
dt_util.utc_from_timestamp(now_timestamp - self.ages[0]),
)
break
if debug:
_LOGGER.debug(
"%s: purging record with datetime %s(%s)",
self.entity_id,
dt_util.as_local(dt_util.utc_from_timestamp(self.ages[0])),
dt_util.utc_from_timestamp(now_timestamp - self.ages[0]),
)
self.ages.popleft()
self.states.popleft()
@callback
def _async_next_to_purge_timestamp(self) -> float | None:
"""Find the timestamp when the next purge would occur."""
if self.ages and self._samples_max_age:
if self.samples_keep_last and len(self.ages) == 1:
# Preserve the most recent entry if it is the only value.
# Do not schedule another purge. When a new source
# value is inserted it will restart purge cycle.
if _LOGGER.isEnabledFor(logging.DEBUG):
_LOGGER.debug(
"%s: skipping purge cycle for last record with datetime %s(%s)",
self.entity_id,
dt_util.as_local(dt_util.utc_from_timestamp(self.ages[0])),
(dt_util.utcnow() - dt_util.utc_from_timestamp(self.ages[0])),
)
return None
# Take the oldest entry from the ages list and add the configured max_age.
# If executed after purging old states, the result is the next timestamp
# in the future when the oldest state will expire.
return self.ages[0] + self._samples_max_age
return None
async def async_update(self) -> None:
"""Get the latest data and updates the states."""
self._async_purge_update_and_schedule()
def _async_purge_update_and_schedule(self) -> None:
"""Purge old states, update the sensor and schedule the next update."""
_LOGGER.debug("%s: updating statistics", self.entity_id)
if self._samples_max_age is not None:
self._purge_old_states(self._samples_max_age)
self._update_extra_state_attributes()
self._update_value()
# If max_age is set, ensure to update again after the defined interval.
# By basing updates off the timestamps of sampled data we avoid updating
# when none of the observed entities change.
if timestamp := self._async_next_to_purge_timestamp():
if _LOGGER.isEnabledFor(logging.DEBUG):
_LOGGER.debug(
"%s: scheduling update at %s",
self.entity_id,
dt_util.utc_from_timestamp(timestamp),
)
self._async_cancel_update_listener()
self._update_listener = async_track_point_in_utc_time(
self.hass,
self._async_scheduled_update,
dt_util.utc_from_timestamp(timestamp),
)
@callback
def _async_cancel_update_listener(self) -> None:
"""Cancel the scheduled update listener."""
if self._update_listener:
self._update_listener()
self._update_listener = None
@callback
def _async_scheduled_update(self, now: datetime) -> None:
"""Timer callback for sensor update."""
_LOGGER.debug("%s: executing scheduled update", self.entity_id)
self._async_cancel_update_listener()
self._async_purge_update_and_schedule()
# only write state to the state machine if we are not in preview mode
if not self._preview_callback:
self.async_write_ha_state()
def _fetch_states_from_database(self) -> list[State]:
"""Fetch the states from the database."""
_LOGGER.debug("%s: initializing values from the database", self.entity_id)
lower_entity_id = self._source_entity_id.lower()
if (max_age := self._samples_max_age) is not None:
start_date = (
dt_util.utcnow()
- timedelta(seconds=max_age)
- timedelta(microseconds=1)
)
_LOGGER.debug(
"%s: retrieve records not older then %s",
self.entity_id,
start_date,
)
else:
start_date = datetime.fromtimestamp(0, tz=dt_util.UTC)
_LOGGER.debug("%s: retrieving all records", self.entity_id)
return history.state_changes_during_period(
self.hass,
start_date,
entity_id=lower_entity_id,
descending=True,
limit=self._samples_max_buffer_size,
include_start_time_state=False,
).get(lower_entity_id, [])
async def _initialize_from_database(self) -> None:
"""Initialize the list of states from the database.
The query will get the list of states in DESCENDING order so that we
can limit the result to self._sample_size. Afterwards reverse the
list so that we get it in the right order again.
If MaxAge is provided then query will restrict to entries younger then
current datetime - MaxAge.
"""
if states := await get_instance(self.hass).async_add_executor_job(
self._fetch_states_from_database
):
for state in reversed(states):
self._add_state_to_queue(state)
self._calculate_state_attributes(state)
self._async_purge_update_and_schedule()
# only write state to the state machine if we are not in preview mode
if self._preview_callback:
calculated_state = self._async_calculate_state()
self._preview_callback(calculated_state.state, calculated_state.attributes)
else:
self.async_write_ha_state()
_LOGGER.debug("%s: initializing from database completed", self.entity_id)
def _update_extra_state_attributes(self) -> None:
"""Calculate and update the various attributes."""
if self._samples_max_buffer_size is not None:
self._attr_extra_state_attributes[STAT_BUFFER_USAGE_RATIO] = round(
len(self.states) / self._samples_max_buffer_size, 2
)
if (max_age := self._samples_max_age) is not None:
if len(self.states) >= 1:
self._attr_extra_state_attributes[STAT_AGE_COVERAGE_RATIO] = round(
(self.ages[-1] - self.ages[0]) / max_age,
2,
)
else:
self._attr_extra_state_attributes[STAT_AGE_COVERAGE_RATIO] = 0
def _update_value(self) -> None:
"""Front to call the right statistical characteristics functions.
One of the _stat_*() functions is represented by self._state_characteristic_fn().
"""
value = self._state_characteristic_fn(self.states, self.ages, self._percentile)
_LOGGER.debug(
"Updating value: states: %s, ages: %s => %s", self.states, self.ages, value
)
if self._state_characteristic not in STATS_NOT_A_NUMBER:
with contextlib.suppress(TypeError):
value = round(cast(float, value), self._precision)
if self._precision == 0:
value = int(value)
self._attr_native_value = value