1104 lines
37 KiB
Python
1104 lines
37 KiB
Python
"""Support for statistics for sensor values."""
|
|
|
|
from __future__ import annotations
|
|
|
|
from collections import deque
|
|
from collections.abc import Callable, Mapping
|
|
import contextlib
|
|
from datetime import datetime, timedelta
|
|
import logging
|
|
import math
|
|
import statistics
|
|
import time
|
|
from typing import Any, cast
|
|
|
|
import voluptuous as vol
|
|
|
|
from homeassistant.components.binary_sensor import DOMAIN as BINARY_SENSOR_DOMAIN
|
|
from homeassistant.components.recorder import get_instance, history
|
|
from homeassistant.components.sensor import (
|
|
DEVICE_CLASS_STATE_CLASSES,
|
|
DEVICE_CLASS_UNITS,
|
|
PLATFORM_SCHEMA as SENSOR_PLATFORM_SCHEMA,
|
|
SensorDeviceClass,
|
|
SensorEntity,
|
|
SensorStateClass,
|
|
)
|
|
from homeassistant.config_entries import ConfigEntry
|
|
from homeassistant.const import (
|
|
ATTR_DEVICE_CLASS,
|
|
ATTR_UNIT_OF_MEASUREMENT,
|
|
CONF_ENTITY_ID,
|
|
CONF_NAME,
|
|
CONF_UNIQUE_ID,
|
|
PERCENTAGE,
|
|
STATE_UNAVAILABLE,
|
|
STATE_UNKNOWN,
|
|
)
|
|
from homeassistant.core import (
|
|
CALLBACK_TYPE,
|
|
Event,
|
|
EventStateChangedData,
|
|
EventStateReportedData,
|
|
HomeAssistant,
|
|
State,
|
|
callback,
|
|
split_entity_id,
|
|
)
|
|
from homeassistant.helpers import config_validation as cv
|
|
from homeassistant.helpers.device import async_device_info_to_link_from_entity
|
|
from homeassistant.helpers.entity_platform import AddEntitiesCallback
|
|
from homeassistant.helpers.event import (
|
|
async_track_point_in_utc_time,
|
|
async_track_state_change_event,
|
|
async_track_state_report_event,
|
|
)
|
|
from homeassistant.helpers.reload import async_setup_reload_service
|
|
from homeassistant.helpers.typing import ConfigType, DiscoveryInfoType
|
|
from homeassistant.util import dt as dt_util
|
|
from homeassistant.util.enum import try_parse_enum
|
|
|
|
from . import DOMAIN, PLATFORMS
|
|
|
|
_LOGGER = logging.getLogger(__name__)
|
|
|
|
# Stats for attributes only
|
|
STAT_AGE_COVERAGE_RATIO = "age_coverage_ratio"
|
|
STAT_BUFFER_USAGE_RATIO = "buffer_usage_ratio"
|
|
STAT_SOURCE_VALUE_VALID = "source_value_valid"
|
|
|
|
# All sensor statistics
|
|
STAT_AVERAGE_LINEAR = "average_linear"
|
|
STAT_AVERAGE_STEP = "average_step"
|
|
STAT_AVERAGE_TIMELESS = "average_timeless"
|
|
STAT_CHANGE = "change"
|
|
STAT_CHANGE_SAMPLE = "change_sample"
|
|
STAT_CHANGE_SECOND = "change_second"
|
|
STAT_COUNT = "count"
|
|
STAT_COUNT_BINARY_ON = "count_on"
|
|
STAT_COUNT_BINARY_OFF = "count_off"
|
|
STAT_DATETIME_NEWEST = "datetime_newest"
|
|
STAT_DATETIME_OLDEST = "datetime_oldest"
|
|
STAT_DATETIME_VALUE_MAX = "datetime_value_max"
|
|
STAT_DATETIME_VALUE_MIN = "datetime_value_min"
|
|
STAT_DISTANCE_95P = "distance_95_percent_of_values"
|
|
STAT_DISTANCE_99P = "distance_99_percent_of_values"
|
|
STAT_DISTANCE_ABSOLUTE = "distance_absolute"
|
|
STAT_MEAN = "mean"
|
|
STAT_MEAN_CIRCULAR = "mean_circular"
|
|
STAT_MEDIAN = "median"
|
|
STAT_NOISINESS = "noisiness"
|
|
STAT_PERCENTILE = "percentile"
|
|
STAT_STANDARD_DEVIATION = "standard_deviation"
|
|
STAT_SUM = "sum"
|
|
STAT_SUM_DIFFERENCES = "sum_differences"
|
|
STAT_SUM_DIFFERENCES_NONNEGATIVE = "sum_differences_nonnegative"
|
|
STAT_TOTAL = "total"
|
|
STAT_VALUE_MAX = "value_max"
|
|
STAT_VALUE_MIN = "value_min"
|
|
STAT_VARIANCE = "variance"
|
|
|
|
|
|
def _callable_characteristic_fn(
|
|
characteristic: str, binary: bool
|
|
) -> Callable[[deque[bool | float], deque[float], int], float | int | datetime | None]:
|
|
"""Return the function callable of one characteristic function."""
|
|
Callable[[deque[bool | float], deque[datetime], int], datetime | int | float | None]
|
|
if binary:
|
|
return STATS_BINARY_SUPPORT[characteristic]
|
|
return STATS_NUMERIC_SUPPORT[characteristic]
|
|
|
|
|
|
# Statistics for numeric sensor
|
|
|
|
|
|
def _stat_average_linear(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) == 1:
|
|
return states[0]
|
|
if len(states) >= 2:
|
|
area: float = 0
|
|
for i in range(1, len(states)):
|
|
area += 0.5 * (states[i] + states[i - 1]) * (ages[i] - ages[i - 1])
|
|
age_range_seconds = ages[-1] - ages[0]
|
|
return area / age_range_seconds
|
|
return None
|
|
|
|
|
|
def _stat_average_step(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) == 1:
|
|
return states[0]
|
|
if len(states) >= 2:
|
|
area: float = 0
|
|
for i in range(1, len(states)):
|
|
area += states[i - 1] * (ages[i] - ages[i - 1])
|
|
age_range_seconds = ages[-1] - ages[0]
|
|
return area / age_range_seconds
|
|
return None
|
|
|
|
|
|
def _stat_average_timeless(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
return _stat_mean(states, ages, percentile)
|
|
|
|
|
|
def _stat_change(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) > 0:
|
|
return states[-1] - states[0]
|
|
return None
|
|
|
|
|
|
def _stat_change_sample(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) > 1:
|
|
return (states[-1] - states[0]) / (len(states) - 1)
|
|
return None
|
|
|
|
|
|
def _stat_change_second(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) > 1:
|
|
age_range_seconds = ages[-1] - ages[0]
|
|
if age_range_seconds > 0:
|
|
return (states[-1] - states[0]) / age_range_seconds
|
|
return None
|
|
|
|
|
|
def _stat_count(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> int | None:
|
|
return len(states)
|
|
|
|
|
|
def _stat_datetime_newest(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> datetime | None:
|
|
if len(states) > 0:
|
|
return dt_util.utc_from_timestamp(ages[-1])
|
|
return None
|
|
|
|
|
|
def _stat_datetime_oldest(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> datetime | None:
|
|
if len(states) > 0:
|
|
return dt_util.utc_from_timestamp(ages[0])
|
|
return None
|
|
|
|
|
|
def _stat_datetime_value_max(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> datetime | None:
|
|
if len(states) > 0:
|
|
return dt_util.utc_from_timestamp(ages[states.index(max(states))])
|
|
return None
|
|
|
|
|
|
def _stat_datetime_value_min(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> datetime | None:
|
|
if len(states) > 0:
|
|
return dt_util.utc_from_timestamp(ages[states.index(min(states))])
|
|
return None
|
|
|
|
|
|
def _stat_distance_95_percent_of_values(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) >= 1:
|
|
return (
|
|
2 * 1.96 * cast(float, _stat_standard_deviation(states, ages, percentile))
|
|
)
|
|
return None
|
|
|
|
|
|
def _stat_distance_99_percent_of_values(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) >= 1:
|
|
return (
|
|
2 * 2.58 * cast(float, _stat_standard_deviation(states, ages, percentile))
|
|
)
|
|
return None
|
|
|
|
|
|
def _stat_distance_absolute(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) > 0:
|
|
return max(states) - min(states)
|
|
return None
|
|
|
|
|
|
def _stat_mean(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) > 0:
|
|
return statistics.mean(states)
|
|
return None
|
|
|
|
|
|
def _stat_mean_circular(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) > 0:
|
|
sin_sum = sum(math.sin(math.radians(x)) for x in states)
|
|
cos_sum = sum(math.cos(math.radians(x)) for x in states)
|
|
return (math.degrees(math.atan2(sin_sum, cos_sum)) + 360) % 360
|
|
return None
|
|
|
|
|
|
def _stat_median(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) > 0:
|
|
return statistics.median(states)
|
|
return None
|
|
|
|
|
|
def _stat_noisiness(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) == 1:
|
|
return 0.0
|
|
if len(states) >= 2:
|
|
return cast(float, _stat_sum_differences(states, ages, percentile)) / (
|
|
len(states) - 1
|
|
)
|
|
return None
|
|
|
|
|
|
def _stat_percentile(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) == 1:
|
|
return states[0]
|
|
if len(states) >= 2:
|
|
percentiles = statistics.quantiles(states, n=100, method="exclusive")
|
|
return percentiles[percentile - 1]
|
|
return None
|
|
|
|
|
|
def _stat_standard_deviation(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) == 1:
|
|
return 0.0
|
|
if len(states) >= 2:
|
|
return statistics.stdev(states)
|
|
return None
|
|
|
|
|
|
def _stat_sum(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) > 0:
|
|
return sum(states)
|
|
return None
|
|
|
|
|
|
def _stat_sum_differences(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) == 1:
|
|
return 0.0
|
|
if len(states) >= 2:
|
|
return sum(
|
|
abs(j - i) for i, j in zip(list(states), list(states)[1:], strict=False)
|
|
)
|
|
return None
|
|
|
|
|
|
def _stat_sum_differences_nonnegative(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) == 1:
|
|
return 0.0
|
|
if len(states) >= 2:
|
|
return sum(
|
|
(j - i if j >= i else j - 0)
|
|
for i, j in zip(list(states), list(states)[1:], strict=False)
|
|
)
|
|
return None
|
|
|
|
|
|
def _stat_total(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
return _stat_sum(states, ages, percentile)
|
|
|
|
|
|
def _stat_value_max(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) > 0:
|
|
return max(states)
|
|
return None
|
|
|
|
|
|
def _stat_value_min(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) > 0:
|
|
return min(states)
|
|
return None
|
|
|
|
|
|
def _stat_variance(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) == 1:
|
|
return 0.0
|
|
if len(states) >= 2:
|
|
return statistics.variance(states)
|
|
return None
|
|
|
|
|
|
# Statistics for binary sensor
|
|
|
|
|
|
def _stat_binary_average_step(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) == 1:
|
|
return 100.0 * int(states[0] is True)
|
|
if len(states) >= 2:
|
|
on_seconds: float = 0
|
|
for i in range(1, len(states)):
|
|
if states[i - 1] is True:
|
|
on_seconds += ages[i] - ages[i - 1]
|
|
age_range_seconds = ages[-1] - ages[0]
|
|
return 100 / age_range_seconds * on_seconds
|
|
return None
|
|
|
|
|
|
def _stat_binary_average_timeless(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
return _stat_binary_mean(states, ages, percentile)
|
|
|
|
|
|
def _stat_binary_count(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> int | None:
|
|
return len(states)
|
|
|
|
|
|
def _stat_binary_count_on(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> int | None:
|
|
return states.count(True)
|
|
|
|
|
|
def _stat_binary_count_off(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> int | None:
|
|
return states.count(False)
|
|
|
|
|
|
def _stat_binary_datetime_newest(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> datetime | None:
|
|
return _stat_datetime_newest(states, ages, percentile)
|
|
|
|
|
|
def _stat_binary_datetime_oldest(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> datetime | None:
|
|
return _stat_datetime_oldest(states, ages, percentile)
|
|
|
|
|
|
def _stat_binary_mean(
|
|
states: deque[bool | float], ages: deque[float], percentile: int
|
|
) -> float | None:
|
|
if len(states) > 0:
|
|
return 100.0 / len(states) * states.count(True)
|
|
return None
|
|
|
|
|
|
# Statistics supported by a sensor source (numeric)
|
|
STATS_NUMERIC_SUPPORT = {
|
|
STAT_AVERAGE_LINEAR: _stat_average_linear,
|
|
STAT_AVERAGE_STEP: _stat_average_step,
|
|
STAT_AVERAGE_TIMELESS: _stat_average_timeless,
|
|
STAT_CHANGE_SAMPLE: _stat_change_sample,
|
|
STAT_CHANGE_SECOND: _stat_change_second,
|
|
STAT_CHANGE: _stat_change,
|
|
STAT_COUNT: _stat_count,
|
|
STAT_DATETIME_NEWEST: _stat_datetime_newest,
|
|
STAT_DATETIME_OLDEST: _stat_datetime_oldest,
|
|
STAT_DATETIME_VALUE_MAX: _stat_datetime_value_max,
|
|
STAT_DATETIME_VALUE_MIN: _stat_datetime_value_min,
|
|
STAT_DISTANCE_95P: _stat_distance_95_percent_of_values,
|
|
STAT_DISTANCE_99P: _stat_distance_99_percent_of_values,
|
|
STAT_DISTANCE_ABSOLUTE: _stat_distance_absolute,
|
|
STAT_MEAN: _stat_mean,
|
|
STAT_MEAN_CIRCULAR: _stat_mean_circular,
|
|
STAT_MEDIAN: _stat_median,
|
|
STAT_NOISINESS: _stat_noisiness,
|
|
STAT_PERCENTILE: _stat_percentile,
|
|
STAT_STANDARD_DEVIATION: _stat_standard_deviation,
|
|
STAT_SUM: _stat_sum,
|
|
STAT_SUM_DIFFERENCES: _stat_sum_differences,
|
|
STAT_SUM_DIFFERENCES_NONNEGATIVE: _stat_sum_differences_nonnegative,
|
|
STAT_TOTAL: _stat_total,
|
|
STAT_VALUE_MAX: _stat_value_max,
|
|
STAT_VALUE_MIN: _stat_value_min,
|
|
STAT_VARIANCE: _stat_variance,
|
|
}
|
|
|
|
# Statistics supported by a binary_sensor source
|
|
STATS_BINARY_SUPPORT = {
|
|
STAT_AVERAGE_STEP: _stat_binary_average_step,
|
|
STAT_AVERAGE_TIMELESS: _stat_binary_average_timeless,
|
|
STAT_COUNT: _stat_binary_count,
|
|
STAT_COUNT_BINARY_ON: _stat_binary_count_on,
|
|
STAT_COUNT_BINARY_OFF: _stat_binary_count_off,
|
|
STAT_DATETIME_NEWEST: _stat_binary_datetime_newest,
|
|
STAT_DATETIME_OLDEST: _stat_binary_datetime_oldest,
|
|
STAT_MEAN: _stat_binary_mean,
|
|
}
|
|
|
|
STATS_NOT_A_NUMBER = {
|
|
STAT_DATETIME_NEWEST,
|
|
STAT_DATETIME_OLDEST,
|
|
STAT_DATETIME_VALUE_MAX,
|
|
STAT_DATETIME_VALUE_MIN,
|
|
}
|
|
|
|
STATS_DATETIME = {
|
|
STAT_DATETIME_NEWEST,
|
|
STAT_DATETIME_OLDEST,
|
|
STAT_DATETIME_VALUE_MAX,
|
|
STAT_DATETIME_VALUE_MIN,
|
|
}
|
|
|
|
# Statistics which retain the unit of the source entity
|
|
STATS_NUMERIC_RETAIN_UNIT = {
|
|
STAT_AVERAGE_LINEAR,
|
|
STAT_AVERAGE_STEP,
|
|
STAT_AVERAGE_TIMELESS,
|
|
STAT_CHANGE,
|
|
STAT_DISTANCE_95P,
|
|
STAT_DISTANCE_99P,
|
|
STAT_DISTANCE_ABSOLUTE,
|
|
STAT_MEAN,
|
|
STAT_MEAN_CIRCULAR,
|
|
STAT_MEDIAN,
|
|
STAT_NOISINESS,
|
|
STAT_PERCENTILE,
|
|
STAT_STANDARD_DEVIATION,
|
|
STAT_SUM,
|
|
STAT_SUM_DIFFERENCES,
|
|
STAT_SUM_DIFFERENCES_NONNEGATIVE,
|
|
STAT_TOTAL,
|
|
STAT_VALUE_MAX,
|
|
STAT_VALUE_MIN,
|
|
}
|
|
|
|
# Statistics which produce percentage ratio from binary_sensor source entity
|
|
STATS_BINARY_PERCENTAGE = {
|
|
STAT_AVERAGE_STEP,
|
|
STAT_AVERAGE_TIMELESS,
|
|
STAT_MEAN,
|
|
}
|
|
|
|
CONF_STATE_CHARACTERISTIC = "state_characteristic"
|
|
CONF_SAMPLES_MAX_BUFFER_SIZE = "sampling_size"
|
|
CONF_MAX_AGE = "max_age"
|
|
CONF_KEEP_LAST_SAMPLE = "keep_last_sample"
|
|
CONF_PRECISION = "precision"
|
|
CONF_PERCENTILE = "percentile"
|
|
|
|
DEFAULT_NAME = "Statistical characteristic"
|
|
DEFAULT_PRECISION = 2
|
|
ICON = "mdi:calculator"
|
|
|
|
|
|
def valid_state_characteristic_configuration(config: dict[str, Any]) -> dict[str, Any]:
|
|
"""Validate that the characteristic selected is valid for the source sensor type, throw if it isn't."""
|
|
is_binary = split_entity_id(config[CONF_ENTITY_ID])[0] == BINARY_SENSOR_DOMAIN
|
|
characteristic = cast(str, config[CONF_STATE_CHARACTERISTIC])
|
|
if (is_binary and characteristic not in STATS_BINARY_SUPPORT) or (
|
|
not is_binary and characteristic not in STATS_NUMERIC_SUPPORT
|
|
):
|
|
raise vol.ValueInvalid(
|
|
f"The configured characteristic '{characteristic}' is not supported "
|
|
"for the configured source sensor"
|
|
)
|
|
return config
|
|
|
|
|
|
def valid_boundary_configuration(config: dict[str, Any]) -> dict[str, Any]:
|
|
"""Validate that max_age, sampling_size, or both are provided."""
|
|
|
|
if (
|
|
config.get(CONF_SAMPLES_MAX_BUFFER_SIZE) is None
|
|
and config.get(CONF_MAX_AGE) is None
|
|
):
|
|
raise vol.RequiredFieldInvalid(
|
|
"The sensor configuration must provide 'max_age' and/or 'sampling_size'"
|
|
)
|
|
return config
|
|
|
|
|
|
def valid_keep_last_sample(config: dict[str, Any]) -> dict[str, Any]:
|
|
"""Validate that if keep_last_sample is set, max_age must also be set."""
|
|
|
|
if config.get(CONF_KEEP_LAST_SAMPLE) is True and config.get(CONF_MAX_AGE) is None:
|
|
raise vol.RequiredFieldInvalid(
|
|
"The sensor configuration must provide 'max_age' if 'keep_last_sample' is True"
|
|
)
|
|
return config
|
|
|
|
|
|
_PLATFORM_SCHEMA_BASE = SENSOR_PLATFORM_SCHEMA.extend(
|
|
{
|
|
vol.Required(CONF_ENTITY_ID): cv.entity_id,
|
|
vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string,
|
|
vol.Optional(CONF_UNIQUE_ID): cv.string,
|
|
vol.Required(CONF_STATE_CHARACTERISTIC): cv.string,
|
|
vol.Optional(CONF_SAMPLES_MAX_BUFFER_SIZE): vol.All(
|
|
vol.Coerce(int), vol.Range(min=1)
|
|
),
|
|
vol.Optional(CONF_MAX_AGE): cv.time_period,
|
|
vol.Optional(CONF_KEEP_LAST_SAMPLE, default=False): cv.boolean,
|
|
vol.Optional(CONF_PRECISION, default=DEFAULT_PRECISION): vol.Coerce(int),
|
|
vol.Optional(CONF_PERCENTILE, default=50): vol.All(
|
|
vol.Coerce(int), vol.Range(min=1, max=99)
|
|
),
|
|
}
|
|
)
|
|
PLATFORM_SCHEMA = vol.All(
|
|
_PLATFORM_SCHEMA_BASE,
|
|
valid_state_characteristic_configuration,
|
|
valid_boundary_configuration,
|
|
valid_keep_last_sample,
|
|
)
|
|
|
|
|
|
async def async_setup_platform(
|
|
hass: HomeAssistant,
|
|
config: ConfigType,
|
|
async_add_entities: AddEntitiesCallback,
|
|
discovery_info: DiscoveryInfoType | None = None,
|
|
) -> None:
|
|
"""Set up the Statistics sensor."""
|
|
|
|
await async_setup_reload_service(hass, DOMAIN, PLATFORMS)
|
|
|
|
async_add_entities(
|
|
new_entities=[
|
|
StatisticsSensor(
|
|
hass=hass,
|
|
source_entity_id=config[CONF_ENTITY_ID],
|
|
name=config[CONF_NAME],
|
|
unique_id=config.get(CONF_UNIQUE_ID),
|
|
state_characteristic=config[CONF_STATE_CHARACTERISTIC],
|
|
samples_max_buffer_size=config.get(CONF_SAMPLES_MAX_BUFFER_SIZE),
|
|
samples_max_age=config.get(CONF_MAX_AGE),
|
|
samples_keep_last=config[CONF_KEEP_LAST_SAMPLE],
|
|
precision=config[CONF_PRECISION],
|
|
percentile=config[CONF_PERCENTILE],
|
|
)
|
|
],
|
|
update_before_add=True,
|
|
)
|
|
|
|
|
|
async def async_setup_entry(
|
|
hass: HomeAssistant,
|
|
entry: ConfigEntry,
|
|
async_add_entities: AddEntitiesCallback,
|
|
) -> None:
|
|
"""Set up the Statistics sensor entry."""
|
|
sampling_size = entry.options.get(CONF_SAMPLES_MAX_BUFFER_SIZE)
|
|
if sampling_size:
|
|
sampling_size = int(sampling_size)
|
|
|
|
max_age = None
|
|
if max_age := entry.options.get(CONF_MAX_AGE):
|
|
max_age = timedelta(**max_age)
|
|
|
|
async_add_entities(
|
|
[
|
|
StatisticsSensor(
|
|
hass=hass,
|
|
source_entity_id=entry.options[CONF_ENTITY_ID],
|
|
name=entry.options[CONF_NAME],
|
|
unique_id=entry.entry_id,
|
|
state_characteristic=entry.options[CONF_STATE_CHARACTERISTIC],
|
|
samples_max_buffer_size=sampling_size,
|
|
samples_max_age=max_age,
|
|
samples_keep_last=entry.options[CONF_KEEP_LAST_SAMPLE],
|
|
precision=int(entry.options[CONF_PRECISION]),
|
|
percentile=int(entry.options[CONF_PERCENTILE]),
|
|
)
|
|
],
|
|
True,
|
|
)
|
|
|
|
|
|
class StatisticsSensor(SensorEntity):
|
|
"""Representation of a Statistics sensor."""
|
|
|
|
_attr_should_poll = False
|
|
_attr_icon = ICON
|
|
|
|
def __init__(
|
|
self,
|
|
hass: HomeAssistant,
|
|
source_entity_id: str,
|
|
name: str,
|
|
unique_id: str | None,
|
|
state_characteristic: str,
|
|
samples_max_buffer_size: int | None,
|
|
samples_max_age: timedelta | None,
|
|
samples_keep_last: bool,
|
|
precision: int,
|
|
percentile: int,
|
|
) -> None:
|
|
"""Initialize the Statistics sensor."""
|
|
self._attr_name: str = name
|
|
self._attr_unique_id: str | None = unique_id
|
|
self._source_entity_id: str = source_entity_id
|
|
self._attr_device_info = async_device_info_to_link_from_entity(
|
|
hass,
|
|
source_entity_id,
|
|
)
|
|
self.is_binary: bool = (
|
|
split_entity_id(self._source_entity_id)[0] == BINARY_SENSOR_DOMAIN
|
|
)
|
|
self._state_characteristic: str = state_characteristic
|
|
self._samples_max_buffer_size: int | None = samples_max_buffer_size
|
|
self._samples_max_age: float | None = (
|
|
samples_max_age.total_seconds() if samples_max_age else None
|
|
)
|
|
self.samples_keep_last: bool = samples_keep_last
|
|
self._precision: int = precision
|
|
self._percentile: int = percentile
|
|
self._attr_available: bool = False
|
|
|
|
self.states: deque[float | bool] = deque(maxlen=samples_max_buffer_size)
|
|
self.ages: deque[float] = deque(maxlen=samples_max_buffer_size)
|
|
self._attr_extra_state_attributes = {}
|
|
|
|
self._state_characteristic_fn: Callable[
|
|
[deque[bool | float], deque[float], int],
|
|
float | int | datetime | None,
|
|
] = _callable_characteristic_fn(state_characteristic, self.is_binary)
|
|
|
|
self._update_listener: CALLBACK_TYPE | None = None
|
|
self._preview_callback: Callable[[str, Mapping[str, Any]], None] | None = None
|
|
|
|
async def async_start_preview(
|
|
self,
|
|
preview_callback: Callable[[str, Mapping[str, Any]], None],
|
|
) -> CALLBACK_TYPE:
|
|
"""Render a preview."""
|
|
# abort early if there is no entity_id
|
|
# as without we can't track changes
|
|
# or either size or max_age is not set
|
|
if not self._source_entity_id or (
|
|
self._samples_max_buffer_size is None and self._samples_max_age is None
|
|
):
|
|
self._attr_available = False
|
|
calculated_state = self._async_calculate_state()
|
|
preview_callback(calculated_state.state, calculated_state.attributes)
|
|
return self._call_on_remove_callbacks
|
|
|
|
self._preview_callback = preview_callback
|
|
|
|
await self._async_stats_sensor_startup()
|
|
return self._call_on_remove_callbacks
|
|
|
|
def _async_handle_new_state(
|
|
self,
|
|
reported_state: State | None,
|
|
) -> None:
|
|
"""Handle the sensor state changes."""
|
|
if (new_state := reported_state) is None:
|
|
return
|
|
self._add_state_to_queue(new_state)
|
|
self._async_purge_update_and_schedule()
|
|
|
|
if self._preview_callback:
|
|
calculated_state = self._async_calculate_state()
|
|
self._preview_callback(calculated_state.state, calculated_state.attributes)
|
|
# only write state to the state machine if we are not in preview mode
|
|
if not self._preview_callback:
|
|
self.async_write_ha_state()
|
|
|
|
@callback
|
|
def _async_stats_sensor_state_change_listener(
|
|
self,
|
|
event: Event[EventStateChangedData],
|
|
) -> None:
|
|
self._async_handle_new_state(event.data["new_state"])
|
|
|
|
@callback
|
|
def _async_stats_sensor_state_report_listener(
|
|
self,
|
|
event: Event[EventStateReportedData],
|
|
) -> None:
|
|
self._async_handle_new_state(event.data["new_state"])
|
|
|
|
async def _async_stats_sensor_startup(self) -> None:
|
|
"""Add listener and get recorded state.
|
|
|
|
Historical data needs to be loaded from the database first before we
|
|
can start accepting new incoming changes.
|
|
This is needed to ensure that the buffer is properly sorted by time.
|
|
"""
|
|
_LOGGER.debug("Startup for %s", self.entity_id)
|
|
if "recorder" in self.hass.config.components:
|
|
await self._initialize_from_database()
|
|
self.async_on_remove(
|
|
async_track_state_change_event(
|
|
self.hass,
|
|
[self._source_entity_id],
|
|
self._async_stats_sensor_state_change_listener,
|
|
)
|
|
)
|
|
self.async_on_remove(
|
|
async_track_state_report_event(
|
|
self.hass,
|
|
[self._source_entity_id],
|
|
self._async_stats_sensor_state_report_listener,
|
|
)
|
|
)
|
|
|
|
async def async_added_to_hass(self) -> None:
|
|
"""Register callbacks."""
|
|
await self._async_stats_sensor_startup()
|
|
|
|
def _add_state_to_queue(self, new_state: State) -> None:
|
|
"""Add the state to the queue."""
|
|
|
|
# Attention: it is not safe to store the new_state object,
|
|
# since the "last_reported" value will be updated over time.
|
|
# Here we make a copy the current value, which is okay.
|
|
self._attr_available = new_state.state != STATE_UNAVAILABLE
|
|
if new_state.state == STATE_UNAVAILABLE:
|
|
self._attr_extra_state_attributes[STAT_SOURCE_VALUE_VALID] = None
|
|
return
|
|
if new_state.state in (STATE_UNKNOWN, None, ""):
|
|
self._attr_extra_state_attributes[STAT_SOURCE_VALUE_VALID] = False
|
|
return
|
|
|
|
try:
|
|
if self.is_binary:
|
|
assert new_state.state in ("on", "off")
|
|
self.states.append(new_state.state == "on")
|
|
else:
|
|
self.states.append(float(new_state.state))
|
|
self.ages.append(new_state.last_reported_timestamp)
|
|
self._attr_extra_state_attributes[STAT_SOURCE_VALUE_VALID] = True
|
|
except ValueError:
|
|
self._attr_extra_state_attributes[STAT_SOURCE_VALUE_VALID] = False
|
|
_LOGGER.error(
|
|
"%s: parsing error. Expected number or binary state, but received '%s'",
|
|
self.entity_id,
|
|
new_state.state,
|
|
)
|
|
return
|
|
|
|
self._calculate_state_attributes(new_state)
|
|
|
|
def _calculate_state_attributes(self, new_state: State) -> None:
|
|
"""Set the entity state attributes."""
|
|
|
|
self._attr_native_unit_of_measurement = self._calculate_unit_of_measurement(
|
|
new_state
|
|
)
|
|
self._attr_device_class = self._calculate_device_class(
|
|
new_state, self._attr_native_unit_of_measurement
|
|
)
|
|
self._attr_state_class = self._calculate_state_class(new_state)
|
|
|
|
def _calculate_unit_of_measurement(self, new_state: State) -> str | None:
|
|
"""Return the calculated unit of measurement.
|
|
|
|
The unit of measurement is that of the source sensor, adjusted based on the
|
|
state characteristics.
|
|
"""
|
|
|
|
base_unit: str | None = new_state.attributes.get(ATTR_UNIT_OF_MEASUREMENT)
|
|
unit: str | None = None
|
|
stat_type = self._state_characteristic
|
|
if self.is_binary and stat_type in STATS_BINARY_PERCENTAGE:
|
|
unit = PERCENTAGE
|
|
elif not base_unit:
|
|
unit = None
|
|
elif stat_type in STATS_NUMERIC_RETAIN_UNIT:
|
|
unit = base_unit
|
|
elif stat_type in STATS_NOT_A_NUMBER or stat_type in (
|
|
STAT_COUNT,
|
|
STAT_COUNT_BINARY_ON,
|
|
STAT_COUNT_BINARY_OFF,
|
|
):
|
|
unit = None
|
|
elif stat_type == STAT_VARIANCE:
|
|
unit = base_unit + "²"
|
|
elif stat_type == STAT_CHANGE_SAMPLE:
|
|
unit = base_unit + "/sample"
|
|
elif stat_type == STAT_CHANGE_SECOND:
|
|
unit = base_unit + "/s"
|
|
|
|
return unit
|
|
|
|
def _calculate_device_class(
|
|
self, new_state: State, unit: str | None
|
|
) -> SensorDeviceClass | None:
|
|
"""Return the calculated device class.
|
|
|
|
The device class is calculated based on the state characteristics,
|
|
the source device class and the unit of measurement is
|
|
in the device class units list.
|
|
"""
|
|
|
|
device_class: SensorDeviceClass | None = None
|
|
stat_type = self._state_characteristic
|
|
if stat_type in STATS_DATETIME:
|
|
return SensorDeviceClass.TIMESTAMP
|
|
if stat_type in STATS_NUMERIC_RETAIN_UNIT:
|
|
device_class = new_state.attributes.get(ATTR_DEVICE_CLASS)
|
|
if device_class is None:
|
|
return None
|
|
if (
|
|
sensor_device_class := try_parse_enum(SensorDeviceClass, device_class)
|
|
) is None:
|
|
return None
|
|
if (
|
|
sensor_device_class
|
|
and (
|
|
sensor_state_classes := DEVICE_CLASS_STATE_CLASSES.get(
|
|
sensor_device_class
|
|
)
|
|
)
|
|
and sensor_state_classes
|
|
and SensorStateClass.MEASUREMENT not in sensor_state_classes
|
|
):
|
|
return None
|
|
if device_class not in DEVICE_CLASS_UNITS:
|
|
return None
|
|
if (
|
|
device_class in DEVICE_CLASS_UNITS
|
|
and unit not in DEVICE_CLASS_UNITS[device_class]
|
|
):
|
|
return None
|
|
|
|
return device_class
|
|
|
|
def _calculate_state_class(self, new_state: State) -> SensorStateClass | None:
|
|
"""Return the calculated state class.
|
|
|
|
Will be None if the characteristics is not numerical, otherwise
|
|
SensorStateClass.MEASUREMENT.
|
|
"""
|
|
if self._state_characteristic in STATS_NOT_A_NUMBER:
|
|
return None
|
|
return SensorStateClass.MEASUREMENT
|
|
|
|
def _purge_old_states(self, max_age: float) -> None:
|
|
"""Remove states which are older than a given age."""
|
|
now_timestamp = time.time()
|
|
debug = _LOGGER.isEnabledFor(logging.DEBUG)
|
|
|
|
if debug:
|
|
_LOGGER.debug(
|
|
"%s: purging records older then %s(%s)(keep_last_sample: %s)",
|
|
self.entity_id,
|
|
dt_util.as_local(dt_util.utc_from_timestamp(now_timestamp - max_age)),
|
|
self._samples_max_age,
|
|
self.samples_keep_last,
|
|
)
|
|
|
|
while self.ages and (now_timestamp - self.ages[0]) > max_age:
|
|
if self.samples_keep_last and len(self.ages) == 1:
|
|
# Under normal circumstance this will not be executed, as a purge will not
|
|
# be scheduled for the last value if samples_keep_last is enabled.
|
|
# If this happens to be called outside normal scheduling logic or a
|
|
# source sensor update, this ensures the last value is preserved.
|
|
if debug:
|
|
_LOGGER.debug(
|
|
"%s: preserving expired record with datetime %s(%s)",
|
|
self.entity_id,
|
|
dt_util.as_local(dt_util.utc_from_timestamp(self.ages[0])),
|
|
dt_util.utc_from_timestamp(now_timestamp - self.ages[0]),
|
|
)
|
|
break
|
|
|
|
if debug:
|
|
_LOGGER.debug(
|
|
"%s: purging record with datetime %s(%s)",
|
|
self.entity_id,
|
|
dt_util.as_local(dt_util.utc_from_timestamp(self.ages[0])),
|
|
dt_util.utc_from_timestamp(now_timestamp - self.ages[0]),
|
|
)
|
|
self.ages.popleft()
|
|
self.states.popleft()
|
|
|
|
@callback
|
|
def _async_next_to_purge_timestamp(self) -> float | None:
|
|
"""Find the timestamp when the next purge would occur."""
|
|
if self.ages and self._samples_max_age:
|
|
if self.samples_keep_last and len(self.ages) == 1:
|
|
# Preserve the most recent entry if it is the only value.
|
|
# Do not schedule another purge. When a new source
|
|
# value is inserted it will restart purge cycle.
|
|
if _LOGGER.isEnabledFor(logging.DEBUG):
|
|
_LOGGER.debug(
|
|
"%s: skipping purge cycle for last record with datetime %s(%s)",
|
|
self.entity_id,
|
|
dt_util.as_local(dt_util.utc_from_timestamp(self.ages[0])),
|
|
(dt_util.utcnow() - dt_util.utc_from_timestamp(self.ages[0])),
|
|
)
|
|
return None
|
|
# Take the oldest entry from the ages list and add the configured max_age.
|
|
# If executed after purging old states, the result is the next timestamp
|
|
# in the future when the oldest state will expire.
|
|
return self.ages[0] + self._samples_max_age
|
|
return None
|
|
|
|
async def async_update(self) -> None:
|
|
"""Get the latest data and updates the states."""
|
|
self._async_purge_update_and_schedule()
|
|
|
|
def _async_purge_update_and_schedule(self) -> None:
|
|
"""Purge old states, update the sensor and schedule the next update."""
|
|
_LOGGER.debug("%s: updating statistics", self.entity_id)
|
|
if self._samples_max_age is not None:
|
|
self._purge_old_states(self._samples_max_age)
|
|
|
|
self._update_extra_state_attributes()
|
|
self._update_value()
|
|
|
|
# If max_age is set, ensure to update again after the defined interval.
|
|
# By basing updates off the timestamps of sampled data we avoid updating
|
|
# when none of the observed entities change.
|
|
if timestamp := self._async_next_to_purge_timestamp():
|
|
if _LOGGER.isEnabledFor(logging.DEBUG):
|
|
_LOGGER.debug(
|
|
"%s: scheduling update at %s",
|
|
self.entity_id,
|
|
dt_util.utc_from_timestamp(timestamp),
|
|
)
|
|
self._async_cancel_update_listener()
|
|
self._update_listener = async_track_point_in_utc_time(
|
|
self.hass,
|
|
self._async_scheduled_update,
|
|
dt_util.utc_from_timestamp(timestamp),
|
|
)
|
|
|
|
@callback
|
|
def _async_cancel_update_listener(self) -> None:
|
|
"""Cancel the scheduled update listener."""
|
|
if self._update_listener:
|
|
self._update_listener()
|
|
self._update_listener = None
|
|
|
|
@callback
|
|
def _async_scheduled_update(self, now: datetime) -> None:
|
|
"""Timer callback for sensor update."""
|
|
_LOGGER.debug("%s: executing scheduled update", self.entity_id)
|
|
self._async_cancel_update_listener()
|
|
self._async_purge_update_and_schedule()
|
|
# only write state to the state machine if we are not in preview mode
|
|
if not self._preview_callback:
|
|
self.async_write_ha_state()
|
|
|
|
def _fetch_states_from_database(self) -> list[State]:
|
|
"""Fetch the states from the database."""
|
|
_LOGGER.debug("%s: initializing values from the database", self.entity_id)
|
|
lower_entity_id = self._source_entity_id.lower()
|
|
if (max_age := self._samples_max_age) is not None:
|
|
start_date = (
|
|
dt_util.utcnow()
|
|
- timedelta(seconds=max_age)
|
|
- timedelta(microseconds=1)
|
|
)
|
|
_LOGGER.debug(
|
|
"%s: retrieve records not older then %s",
|
|
self.entity_id,
|
|
start_date,
|
|
)
|
|
else:
|
|
start_date = datetime.fromtimestamp(0, tz=dt_util.UTC)
|
|
_LOGGER.debug("%s: retrieving all records", self.entity_id)
|
|
return history.state_changes_during_period(
|
|
self.hass,
|
|
start_date,
|
|
entity_id=lower_entity_id,
|
|
descending=True,
|
|
limit=self._samples_max_buffer_size,
|
|
include_start_time_state=False,
|
|
).get(lower_entity_id, [])
|
|
|
|
async def _initialize_from_database(self) -> None:
|
|
"""Initialize the list of states from the database.
|
|
|
|
The query will get the list of states in DESCENDING order so that we
|
|
can limit the result to self._sample_size. Afterwards reverse the
|
|
list so that we get it in the right order again.
|
|
|
|
If MaxAge is provided then query will restrict to entries younger then
|
|
current datetime - MaxAge.
|
|
"""
|
|
if states := await get_instance(self.hass).async_add_executor_job(
|
|
self._fetch_states_from_database
|
|
):
|
|
for state in reversed(states):
|
|
self._add_state_to_queue(state)
|
|
self._calculate_state_attributes(state)
|
|
self._async_purge_update_and_schedule()
|
|
|
|
# only write state to the state machine if we are not in preview mode
|
|
if self._preview_callback:
|
|
calculated_state = self._async_calculate_state()
|
|
self._preview_callback(calculated_state.state, calculated_state.attributes)
|
|
else:
|
|
self.async_write_ha_state()
|
|
_LOGGER.debug("%s: initializing from database completed", self.entity_id)
|
|
|
|
def _update_extra_state_attributes(self) -> None:
|
|
"""Calculate and update the various attributes."""
|
|
if self._samples_max_buffer_size is not None:
|
|
self._attr_extra_state_attributes[STAT_BUFFER_USAGE_RATIO] = round(
|
|
len(self.states) / self._samples_max_buffer_size, 2
|
|
)
|
|
|
|
if (max_age := self._samples_max_age) is not None:
|
|
if len(self.states) >= 1:
|
|
self._attr_extra_state_attributes[STAT_AGE_COVERAGE_RATIO] = round(
|
|
(self.ages[-1] - self.ages[0]) / max_age,
|
|
2,
|
|
)
|
|
else:
|
|
self._attr_extra_state_attributes[STAT_AGE_COVERAGE_RATIO] = 0
|
|
|
|
def _update_value(self) -> None:
|
|
"""Front to call the right statistical characteristics functions.
|
|
|
|
One of the _stat_*() functions is represented by self._state_characteristic_fn().
|
|
"""
|
|
|
|
value = self._state_characteristic_fn(self.states, self.ages, self._percentile)
|
|
_LOGGER.debug(
|
|
"Updating value: states: %s, ages: %s => %s", self.states, self.ages, value
|
|
)
|
|
if self._state_characteristic not in STATS_NOT_A_NUMBER:
|
|
with contextlib.suppress(TypeError):
|
|
value = round(cast(float, value), self._precision)
|
|
if self._precision == 0:
|
|
value = int(value)
|
|
self._attr_native_value = value
|