210 lines
6.1 KiB
Python
210 lines
6.1 KiB
Python
"""Support for displaying the minimal and the maximal value."""
|
|
import logging
|
|
|
|
import voluptuous as vol
|
|
|
|
from homeassistant.components.sensor import PLATFORM_SCHEMA
|
|
from homeassistant.const import (
|
|
ATTR_UNIT_OF_MEASUREMENT,
|
|
CONF_NAME,
|
|
CONF_TYPE,
|
|
STATE_UNAVAILABLE,
|
|
STATE_UNKNOWN,
|
|
)
|
|
from homeassistant.core import callback
|
|
import homeassistant.helpers.config_validation as cv
|
|
from homeassistant.helpers.entity import Entity
|
|
from homeassistant.helpers.event import async_track_state_change
|
|
|
|
_LOGGER = logging.getLogger(__name__)
|
|
|
|
ATTR_MIN_VALUE = "min_value"
|
|
ATTR_MAX_VALUE = "max_value"
|
|
ATTR_COUNT_SENSORS = "count_sensors"
|
|
ATTR_MEAN = "mean"
|
|
ATTR_LAST = "last"
|
|
|
|
ATTR_TO_PROPERTY = [
|
|
ATTR_COUNT_SENSORS,
|
|
ATTR_MAX_VALUE,
|
|
ATTR_MEAN,
|
|
ATTR_MIN_VALUE,
|
|
ATTR_LAST,
|
|
]
|
|
|
|
CONF_ENTITY_IDS = "entity_ids"
|
|
CONF_ROUND_DIGITS = "round_digits"
|
|
|
|
ICON = "mdi:calculator"
|
|
|
|
SENSOR_TYPES = {
|
|
ATTR_MIN_VALUE: "min",
|
|
ATTR_MAX_VALUE: "max",
|
|
ATTR_MEAN: "mean",
|
|
ATTR_LAST: "last",
|
|
}
|
|
|
|
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend(
|
|
{
|
|
vol.Optional(CONF_TYPE, default=SENSOR_TYPES[ATTR_MAX_VALUE]): vol.All(
|
|
cv.string, vol.In(SENSOR_TYPES.values())
|
|
),
|
|
vol.Optional(CONF_NAME): cv.string,
|
|
vol.Required(CONF_ENTITY_IDS): cv.entity_ids,
|
|
vol.Optional(CONF_ROUND_DIGITS, default=2): vol.Coerce(int),
|
|
}
|
|
)
|
|
|
|
|
|
async def async_setup_platform(hass, config, async_add_entities, discovery_info=None):
|
|
"""Set up the min/max/mean sensor."""
|
|
entity_ids = config.get(CONF_ENTITY_IDS)
|
|
name = config.get(CONF_NAME)
|
|
sensor_type = config.get(CONF_TYPE)
|
|
round_digits = config.get(CONF_ROUND_DIGITS)
|
|
|
|
async_add_entities(
|
|
[MinMaxSensor(hass, entity_ids, name, sensor_type, round_digits)], True
|
|
)
|
|
return True
|
|
|
|
|
|
def calc_min(sensor_values):
|
|
"""Calculate min value, honoring unknown states."""
|
|
val = None
|
|
for sval in sensor_values:
|
|
if sval != STATE_UNKNOWN:
|
|
if val is None or val > sval:
|
|
val = sval
|
|
return val
|
|
|
|
|
|
def calc_max(sensor_values):
|
|
"""Calculate max value, honoring unknown states."""
|
|
val = None
|
|
for sval in sensor_values:
|
|
if sval != STATE_UNKNOWN:
|
|
if val is None or val < sval:
|
|
val = sval
|
|
return val
|
|
|
|
|
|
def calc_mean(sensor_values, round_digits):
|
|
"""Calculate mean value, honoring unknown states."""
|
|
val = 0
|
|
count = 0
|
|
for sval in sensor_values:
|
|
if sval != STATE_UNKNOWN:
|
|
val += sval
|
|
count += 1
|
|
if count == 0:
|
|
return None
|
|
return round(val / count, round_digits)
|
|
|
|
|
|
class MinMaxSensor(Entity):
|
|
"""Representation of a min/max sensor."""
|
|
|
|
def __init__(self, hass, entity_ids, name, sensor_type, round_digits):
|
|
"""Initialize the min/max sensor."""
|
|
self._hass = hass
|
|
self._entity_ids = entity_ids
|
|
self._sensor_type = sensor_type
|
|
self._round_digits = round_digits
|
|
|
|
if name:
|
|
self._name = name
|
|
else:
|
|
self._name = "{} sensor".format(
|
|
next(v for k, v in SENSOR_TYPES.items() if self._sensor_type == v)
|
|
).capitalize()
|
|
self._unit_of_measurement = None
|
|
self._unit_of_measurement_mismatch = False
|
|
self.min_value = self.max_value = self.mean = self.last = None
|
|
self.count_sensors = len(self._entity_ids)
|
|
self.states = {}
|
|
|
|
@callback
|
|
def async_min_max_sensor_state_listener(entity, old_state, new_state):
|
|
"""Handle the sensor state changes."""
|
|
if new_state.state is None or new_state.state in [
|
|
STATE_UNKNOWN,
|
|
STATE_UNAVAILABLE,
|
|
]:
|
|
self.states[entity] = STATE_UNKNOWN
|
|
hass.async_add_job(self.async_update_ha_state, True)
|
|
return
|
|
|
|
if self._unit_of_measurement is None:
|
|
self._unit_of_measurement = new_state.attributes.get(
|
|
ATTR_UNIT_OF_MEASUREMENT
|
|
)
|
|
|
|
if self._unit_of_measurement != new_state.attributes.get(
|
|
ATTR_UNIT_OF_MEASUREMENT
|
|
):
|
|
_LOGGER.warning(
|
|
"Units of measurement do not match for entity %s", self.entity_id
|
|
)
|
|
self._unit_of_measurement_mismatch = True
|
|
|
|
try:
|
|
self.states[entity] = float(new_state.state)
|
|
self.last = float(new_state.state)
|
|
except ValueError:
|
|
_LOGGER.warning(
|
|
"Unable to store state. Only numerical states are supported"
|
|
)
|
|
|
|
hass.async_add_job(self.async_update_ha_state, True)
|
|
|
|
async_track_state_change(hass, entity_ids, async_min_max_sensor_state_listener)
|
|
|
|
@property
|
|
def name(self):
|
|
"""Return the name of the sensor."""
|
|
return self._name
|
|
|
|
@property
|
|
def state(self):
|
|
"""Return the state of the sensor."""
|
|
if self._unit_of_measurement_mismatch:
|
|
return None
|
|
return getattr(
|
|
self, next(k for k, v in SENSOR_TYPES.items() if self._sensor_type == v)
|
|
)
|
|
|
|
@property
|
|
def unit_of_measurement(self):
|
|
"""Return the unit the value is expressed in."""
|
|
if self._unit_of_measurement_mismatch:
|
|
return "ERR"
|
|
return self._unit_of_measurement
|
|
|
|
@property
|
|
def should_poll(self):
|
|
"""No polling needed."""
|
|
return False
|
|
|
|
@property
|
|
def device_state_attributes(self):
|
|
"""Return the state attributes of the sensor."""
|
|
state_attr = {
|
|
attr: getattr(self, attr)
|
|
for attr in ATTR_TO_PROPERTY
|
|
if getattr(self, attr) is not None
|
|
}
|
|
return state_attr
|
|
|
|
@property
|
|
def icon(self):
|
|
"""Return the icon to use in the frontend, if any."""
|
|
return ICON
|
|
|
|
async def async_update(self):
|
|
"""Get the latest data and updates the states."""
|
|
sensor_values = [self.states[k] for k in self._entity_ids if k in self.states]
|
|
self.min_value = calc_min(sensor_values)
|
|
self.max_value = calc_max(sensor_values)
|
|
self.mean = calc_mean(sensor_values, self._round_digits)
|