197 lines
6.5 KiB
Python
197 lines
6.5 KiB
Python
"""
|
|
A sensor that monitors trends in other components.
|
|
|
|
For more details about this platform, please refer to the documentation at
|
|
https://home-assistant.io/components/sensor.trend/
|
|
"""
|
|
import asyncio
|
|
from collections import deque
|
|
import logging
|
|
import math
|
|
|
|
import voluptuous as vol
|
|
|
|
from homeassistant.components.binary_sensor import (
|
|
DEVICE_CLASSES_SCHEMA, ENTITY_ID_FORMAT, PLATFORM_SCHEMA,
|
|
BinarySensorDevice)
|
|
from homeassistant.const import (
|
|
ATTR_ENTITY_ID, ATTR_FRIENDLY_NAME, CONF_DEVICE_CLASS, CONF_ENTITY_ID,
|
|
CONF_FRIENDLY_NAME, STATE_UNKNOWN)
|
|
from homeassistant.core import callback
|
|
import homeassistant.helpers.config_validation as cv
|
|
from homeassistant.helpers.entity import generate_entity_id
|
|
from homeassistant.helpers.event import async_track_state_change
|
|
from homeassistant.util import utcnow
|
|
|
|
REQUIREMENTS = ['numpy==1.14.5']
|
|
|
|
_LOGGER = logging.getLogger(__name__)
|
|
|
|
ATTR_ATTRIBUTE = 'attribute'
|
|
ATTR_GRADIENT = 'gradient'
|
|
ATTR_MIN_GRADIENT = 'min_gradient'
|
|
ATTR_INVERT = 'invert'
|
|
ATTR_SAMPLE_DURATION = 'sample_duration'
|
|
ATTR_SAMPLE_COUNT = 'sample_count'
|
|
|
|
CONF_ATTRIBUTE = 'attribute'
|
|
CONF_INVERT = 'invert'
|
|
CONF_MAX_SAMPLES = 'max_samples'
|
|
CONF_MIN_GRADIENT = 'min_gradient'
|
|
CONF_SAMPLE_DURATION = 'sample_duration'
|
|
CONF_SENSORS = 'sensors'
|
|
|
|
SENSOR_SCHEMA = vol.Schema({
|
|
vol.Required(CONF_ENTITY_ID): cv.entity_id,
|
|
vol.Optional(CONF_ATTRIBUTE): cv.string,
|
|
vol.Optional(CONF_DEVICE_CLASS): DEVICE_CLASSES_SCHEMA,
|
|
vol.Optional(CONF_FRIENDLY_NAME): cv.string,
|
|
vol.Optional(CONF_INVERT, default=False): cv.boolean,
|
|
vol.Optional(CONF_MAX_SAMPLES, default=2): cv.positive_int,
|
|
vol.Optional(CONF_MIN_GRADIENT, default=0.0): vol.Coerce(float),
|
|
vol.Optional(CONF_SAMPLE_DURATION, default=0): cv.positive_int,
|
|
})
|
|
|
|
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
|
|
vol.Required(CONF_SENSORS): vol.Schema({cv.slug: SENSOR_SCHEMA}),
|
|
})
|
|
|
|
|
|
def setup_platform(hass, config, add_devices, discovery_info=None):
|
|
"""Set up the trend sensors."""
|
|
sensors = []
|
|
|
|
for device_id, device_config in config[CONF_SENSORS].items():
|
|
entity_id = device_config[ATTR_ENTITY_ID]
|
|
attribute = device_config.get(CONF_ATTRIBUTE)
|
|
device_class = device_config.get(CONF_DEVICE_CLASS)
|
|
friendly_name = device_config.get(ATTR_FRIENDLY_NAME, device_id)
|
|
invert = device_config[CONF_INVERT]
|
|
max_samples = device_config[CONF_MAX_SAMPLES]
|
|
min_gradient = device_config[CONF_MIN_GRADIENT]
|
|
sample_duration = device_config[CONF_SAMPLE_DURATION]
|
|
|
|
sensors.append(
|
|
SensorTrend(
|
|
hass, device_id, friendly_name, entity_id, attribute,
|
|
device_class, invert, max_samples, min_gradient,
|
|
sample_duration)
|
|
)
|
|
if not sensors:
|
|
_LOGGER.error("No sensors added")
|
|
return False
|
|
add_devices(sensors)
|
|
return True
|
|
|
|
|
|
class SensorTrend(BinarySensorDevice):
|
|
"""Representation of a trend Sensor."""
|
|
|
|
def __init__(self, hass, device_id, friendly_name, entity_id,
|
|
attribute, device_class, invert, max_samples,
|
|
min_gradient, sample_duration):
|
|
"""Initialize the sensor."""
|
|
self._hass = hass
|
|
self.entity_id = generate_entity_id(
|
|
ENTITY_ID_FORMAT, device_id, hass=hass)
|
|
self._name = friendly_name
|
|
self._entity_id = entity_id
|
|
self._attribute = attribute
|
|
self._device_class = device_class
|
|
self._invert = invert
|
|
self._sample_duration = sample_duration
|
|
self._min_gradient = min_gradient
|
|
self._gradient = None
|
|
self._state = None
|
|
self.samples = deque(maxlen=max_samples)
|
|
|
|
@property
|
|
def name(self):
|
|
"""Return the name of the sensor."""
|
|
return self._name
|
|
|
|
@property
|
|
def is_on(self):
|
|
"""Return true if sensor is on."""
|
|
return self._state
|
|
|
|
@property
|
|
def device_class(self):
|
|
"""Return the sensor class of the sensor."""
|
|
return self._device_class
|
|
|
|
@property
|
|
def device_state_attributes(self):
|
|
"""Return the state attributes of the sensor."""
|
|
return {
|
|
ATTR_ENTITY_ID: self._entity_id,
|
|
ATTR_FRIENDLY_NAME: self._name,
|
|
ATTR_GRADIENT: self._gradient,
|
|
ATTR_INVERT: self._invert,
|
|
ATTR_MIN_GRADIENT: self._min_gradient,
|
|
ATTR_SAMPLE_COUNT: len(self.samples),
|
|
ATTR_SAMPLE_DURATION: self._sample_duration,
|
|
}
|
|
|
|
@property
|
|
def should_poll(self):
|
|
"""No polling needed."""
|
|
return False
|
|
|
|
@asyncio.coroutine
|
|
def async_added_to_hass(self):
|
|
"""Complete device setup after being added to hass."""
|
|
@callback
|
|
def trend_sensor_state_listener(entity, old_state, new_state):
|
|
"""Handle state changes on the observed device."""
|
|
try:
|
|
if self._attribute:
|
|
state = new_state.attributes.get(self._attribute)
|
|
else:
|
|
state = new_state.state
|
|
if state != STATE_UNKNOWN:
|
|
sample = (utcnow().timestamp(), float(state))
|
|
self.samples.append(sample)
|
|
self.async_schedule_update_ha_state(True)
|
|
except (ValueError, TypeError) as ex:
|
|
_LOGGER.error(ex)
|
|
|
|
async_track_state_change(
|
|
self.hass, self._entity_id,
|
|
trend_sensor_state_listener)
|
|
|
|
@asyncio.coroutine
|
|
def async_update(self):
|
|
"""Get the latest data and update the states."""
|
|
# Remove outdated samples
|
|
if self._sample_duration > 0:
|
|
cutoff = utcnow().timestamp() - self._sample_duration
|
|
while self.samples and self.samples[0][0] < cutoff:
|
|
self.samples.popleft()
|
|
|
|
if len(self.samples) < 2:
|
|
return
|
|
|
|
# Calculate gradient of linear trend
|
|
yield from self.hass.async_add_job(self._calculate_gradient)
|
|
|
|
# Update state
|
|
self._state = (
|
|
abs(self._gradient) > abs(self._min_gradient) and
|
|
math.copysign(self._gradient, self._min_gradient) == self._gradient
|
|
)
|
|
|
|
if self._invert:
|
|
self._state = not self._state
|
|
|
|
def _calculate_gradient(self):
|
|
"""Compute the linear trend gradient of the current samples.
|
|
|
|
This need run inside executor.
|
|
"""
|
|
import numpy as np
|
|
timestamps = np.array([t for t, _ in self.samples])
|
|
values = np.array([s for _, s in self.samples])
|
|
coeffs = np.polyfit(timestamps, values, 1)
|
|
self._gradient = coeffs[0]
|