195 lines
5.9 KiB
Python
195 lines
5.9 KiB
Python
"""Support for IQVIA sensors."""
|
|
import logging
|
|
from statistics import mean
|
|
|
|
import numpy as np
|
|
|
|
from homeassistant.components.iqvia import (
|
|
DATA_CLIENT, DOMAIN, SENSORS, TYPE_ALLERGY_FORECAST, TYPE_ALLERGY_OUTLOOK,
|
|
TYPE_ALLERGY_INDEX, TYPE_ALLERGY_TODAY, TYPE_ALLERGY_TOMORROW,
|
|
TYPE_ASTHMA_FORECAST, TYPE_ASTHMA_INDEX, TYPE_ASTHMA_TODAY,
|
|
TYPE_ASTHMA_TOMORROW, TYPE_DISEASE_FORECAST, TYPE_DISEASE_INDEX,
|
|
TYPE_DISEASE_TODAY, IQVIAEntity)
|
|
from homeassistant.const import ATTR_STATE
|
|
|
|
_LOGGER = logging.getLogger(__name__)
|
|
|
|
ATTR_ALLERGEN_AMOUNT = 'allergen_amount'
|
|
ATTR_ALLERGEN_GENUS = 'allergen_genus'
|
|
ATTR_ALLERGEN_NAME = 'allergen_name'
|
|
ATTR_ALLERGEN_TYPE = 'allergen_type'
|
|
ATTR_CITY = 'city'
|
|
ATTR_OUTLOOK = 'outlook'
|
|
ATTR_RATING = 'rating'
|
|
ATTR_SEASON = 'season'
|
|
ATTR_TREND = 'trend'
|
|
ATTR_ZIP_CODE = 'zip_code'
|
|
|
|
RATING_MAPPING = [{
|
|
'label': 'Low',
|
|
'minimum': 0.0,
|
|
'maximum': 2.4
|
|
}, {
|
|
'label': 'Low/Medium',
|
|
'minimum': 2.5,
|
|
'maximum': 4.8
|
|
}, {
|
|
'label': 'Medium',
|
|
'minimum': 4.9,
|
|
'maximum': 7.2
|
|
}, {
|
|
'label': 'Medium/High',
|
|
'minimum': 7.3,
|
|
'maximum': 9.6
|
|
}, {
|
|
'label': 'High',
|
|
'minimum': 9.7,
|
|
'maximum': 12
|
|
}]
|
|
|
|
TREND_FLAT = 'Flat'
|
|
TREND_INCREASING = 'Increasing'
|
|
TREND_SUBSIDING = 'Subsiding'
|
|
|
|
|
|
async def async_setup_platform(
|
|
hass, config, async_add_entities, discovery_info=None):
|
|
"""Set up IQVIA sensors based on the old way."""
|
|
pass
|
|
|
|
|
|
async def async_setup_entry(hass, entry, async_add_entities):
|
|
"""Set up IQVIA sensors based on a config entry."""
|
|
iqvia = hass.data[DOMAIN][DATA_CLIENT][entry.entry_id]
|
|
|
|
sensor_class_mapping = {
|
|
TYPE_ALLERGY_FORECAST: ForecastSensor,
|
|
TYPE_ALLERGY_TODAY: IndexSensor,
|
|
TYPE_ALLERGY_TOMORROW: IndexSensor,
|
|
TYPE_ASTHMA_FORECAST: ForecastSensor,
|
|
TYPE_ASTHMA_TODAY: IndexSensor,
|
|
TYPE_ASTHMA_TOMORROW: IndexSensor,
|
|
TYPE_DISEASE_FORECAST: ForecastSensor,
|
|
TYPE_DISEASE_TODAY: IndexSensor,
|
|
}
|
|
|
|
sensors = []
|
|
for sensor_type in iqvia.sensor_types:
|
|
klass = sensor_class_mapping[sensor_type]
|
|
name, icon = SENSORS[sensor_type]
|
|
sensors.append(klass(iqvia, sensor_type, name, icon, iqvia.zip_code))
|
|
|
|
async_add_entities(sensors, True)
|
|
|
|
|
|
def calculate_trend(indices):
|
|
"""Calculate the "moving average" of a set of indices."""
|
|
index_range = np.arange(0, len(indices))
|
|
index_array = np.array(indices)
|
|
linear_fit = np.polyfit(index_range, index_array, 1)
|
|
slope = round(linear_fit[0], 2)
|
|
|
|
if slope > 0:
|
|
return TREND_INCREASING
|
|
|
|
if slope < 0:
|
|
return TREND_SUBSIDING
|
|
|
|
return TREND_FLAT
|
|
|
|
|
|
class ForecastSensor(IQVIAEntity):
|
|
"""Define sensor related to forecast data."""
|
|
|
|
async def async_update(self):
|
|
"""Update the sensor."""
|
|
if not self._iqvia.data:
|
|
return
|
|
|
|
data = self._iqvia.data[self._type].get('Location')
|
|
if not data or not data.get('periods'):
|
|
return
|
|
|
|
indices = [p['Index'] for p in data['periods']]
|
|
average = round(mean(indices), 1)
|
|
[rating] = [
|
|
i['label'] for i in RATING_MAPPING
|
|
if i['minimum'] <= average <= i['maximum']
|
|
]
|
|
|
|
self._attrs.update({
|
|
ATTR_CITY: data['City'].title(),
|
|
ATTR_RATING: rating,
|
|
ATTR_STATE: data['State'],
|
|
ATTR_TREND: calculate_trend(indices),
|
|
ATTR_ZIP_CODE: data['ZIP']
|
|
})
|
|
|
|
if self._type == TYPE_ALLERGY_FORECAST:
|
|
outlook = self._iqvia.data[TYPE_ALLERGY_OUTLOOK]
|
|
self._attrs[ATTR_OUTLOOK] = outlook.get('Outlook')
|
|
self._attrs[ATTR_SEASON] = outlook.get('Season')
|
|
|
|
self._state = average
|
|
|
|
|
|
class IndexSensor(IQVIAEntity):
|
|
"""Define sensor related to indices."""
|
|
|
|
async def async_update(self):
|
|
"""Update the sensor."""
|
|
if not self._iqvia.data:
|
|
return
|
|
|
|
data = {}
|
|
if self._type in (TYPE_ALLERGY_TODAY, TYPE_ALLERGY_TOMORROW):
|
|
data = self._iqvia.data[TYPE_ALLERGY_INDEX].get('Location')
|
|
elif self._type in (TYPE_ASTHMA_TODAY, TYPE_ASTHMA_TOMORROW):
|
|
data = self._iqvia.data[TYPE_ASTHMA_INDEX].get('Location')
|
|
elif self._type == TYPE_DISEASE_TODAY:
|
|
data = self._iqvia.data[TYPE_DISEASE_INDEX].get('Location')
|
|
|
|
if not data:
|
|
return
|
|
|
|
key = self._type.split('_')[-1].title()
|
|
[period] = [p for p in data['periods'] if p['Type'] == key]
|
|
[rating] = [
|
|
i['label'] for i in RATING_MAPPING
|
|
if i['minimum'] <= period['Index'] <= i['maximum']
|
|
]
|
|
|
|
self._attrs.update({
|
|
ATTR_CITY: data['City'].title(),
|
|
ATTR_RATING: rating,
|
|
ATTR_STATE: data['State'],
|
|
ATTR_ZIP_CODE: data['ZIP']
|
|
})
|
|
|
|
if self._type in (TYPE_ALLERGY_TODAY, TYPE_ALLERGY_TOMORROW):
|
|
for idx, attrs in enumerate(period['Triggers']):
|
|
index = idx + 1
|
|
self._attrs.update({
|
|
'{0}_{1}'.format(ATTR_ALLERGEN_GENUS, index):
|
|
attrs['Genus'],
|
|
'{0}_{1}'.format(ATTR_ALLERGEN_NAME, index):
|
|
attrs['Name'],
|
|
'{0}_{1}'.format(ATTR_ALLERGEN_TYPE, index):
|
|
attrs['PlantType'],
|
|
})
|
|
elif self._type in (TYPE_ASTHMA_TODAY, TYPE_ASTHMA_TOMORROW):
|
|
for idx, attrs in enumerate(period['Triggers']):
|
|
index = idx + 1
|
|
self._attrs.update({
|
|
'{0}_{1}'.format(ATTR_ALLERGEN_NAME, index):
|
|
attrs['Name'],
|
|
'{0}_{1}'.format(ATTR_ALLERGEN_AMOUNT, index):
|
|
attrs['PPM'],
|
|
})
|
|
elif self._type == TYPE_DISEASE_TODAY:
|
|
for attrs in period['Triggers']:
|
|
self._attrs['{0}_index'.format(
|
|
attrs['Name'].lower())] = attrs['Index']
|
|
|
|
self._state = period['Index']
|