225 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			225 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
"""A sensor that monitors trends in other components."""
 | 
						|
from collections import deque
 | 
						|
import logging
 | 
						|
import math
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import voluptuous as vol
 | 
						|
 | 
						|
from homeassistant.components.binary_sensor import (
 | 
						|
    DEVICE_CLASSES_SCHEMA,
 | 
						|
    ENTITY_ID_FORMAT,
 | 
						|
    PLATFORM_SCHEMA,
 | 
						|
    BinarySensorEntity,
 | 
						|
)
 | 
						|
from homeassistant.const import (
 | 
						|
    ATTR_ENTITY_ID,
 | 
						|
    ATTR_FRIENDLY_NAME,
 | 
						|
    CONF_ATTRIBUTE,
 | 
						|
    CONF_DEVICE_CLASS,
 | 
						|
    CONF_ENTITY_ID,
 | 
						|
    CONF_FRIENDLY_NAME,
 | 
						|
    CONF_SENSORS,
 | 
						|
    STATE_UNAVAILABLE,
 | 
						|
    STATE_UNKNOWN,
 | 
						|
)
 | 
						|
from homeassistant.core import callback
 | 
						|
import homeassistant.helpers.config_validation as cv
 | 
						|
from homeassistant.helpers.entity import generate_entity_id
 | 
						|
from homeassistant.helpers.event import async_track_state_change_event
 | 
						|
from homeassistant.helpers.reload import setup_reload_service
 | 
						|
from homeassistant.util import utcnow
 | 
						|
 | 
						|
from . import DOMAIN, PLATFORMS
 | 
						|
 | 
						|
_LOGGER = logging.getLogger(__name__)
 | 
						|
 | 
						|
ATTR_ATTRIBUTE = "attribute"
 | 
						|
ATTR_GRADIENT = "gradient"
 | 
						|
ATTR_MIN_GRADIENT = "min_gradient"
 | 
						|
ATTR_INVERT = "invert"
 | 
						|
ATTR_SAMPLE_DURATION = "sample_duration"
 | 
						|
ATTR_SAMPLE_COUNT = "sample_count"
 | 
						|
 | 
						|
CONF_INVERT = "invert"
 | 
						|
CONF_MAX_SAMPLES = "max_samples"
 | 
						|
CONF_MIN_GRADIENT = "min_gradient"
 | 
						|
CONF_SAMPLE_DURATION = "sample_duration"
 | 
						|
 | 
						|
SENSOR_SCHEMA = vol.Schema(
 | 
						|
    {
 | 
						|
        vol.Required(CONF_ENTITY_ID): cv.entity_id,
 | 
						|
        vol.Optional(CONF_ATTRIBUTE): cv.string,
 | 
						|
        vol.Optional(CONF_DEVICE_CLASS): DEVICE_CLASSES_SCHEMA,
 | 
						|
        vol.Optional(CONF_FRIENDLY_NAME): cv.string,
 | 
						|
        vol.Optional(CONF_INVERT, default=False): cv.boolean,
 | 
						|
        vol.Optional(CONF_MAX_SAMPLES, default=2): cv.positive_int,
 | 
						|
        vol.Optional(CONF_MIN_GRADIENT, default=0.0): vol.Coerce(float),
 | 
						|
        vol.Optional(CONF_SAMPLE_DURATION, default=0): cv.positive_int,
 | 
						|
    }
 | 
						|
)
 | 
						|
 | 
						|
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend(
 | 
						|
    {vol.Required(CONF_SENSORS): cv.schema_with_slug_keys(SENSOR_SCHEMA)}
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
def setup_platform(hass, config, add_entities, discovery_info=None):
 | 
						|
    """Set up the trend sensors."""
 | 
						|
    setup_reload_service(hass, DOMAIN, PLATFORMS)
 | 
						|
 | 
						|
    sensors = []
 | 
						|
 | 
						|
    for device_id, device_config in config[CONF_SENSORS].items():
 | 
						|
        entity_id = device_config[ATTR_ENTITY_ID]
 | 
						|
        attribute = device_config.get(CONF_ATTRIBUTE)
 | 
						|
        device_class = device_config.get(CONF_DEVICE_CLASS)
 | 
						|
        friendly_name = device_config.get(ATTR_FRIENDLY_NAME, device_id)
 | 
						|
        invert = device_config[CONF_INVERT]
 | 
						|
        max_samples = device_config[CONF_MAX_SAMPLES]
 | 
						|
        min_gradient = device_config[CONF_MIN_GRADIENT]
 | 
						|
        sample_duration = device_config[CONF_SAMPLE_DURATION]
 | 
						|
 | 
						|
        sensors.append(
 | 
						|
            SensorTrend(
 | 
						|
                hass,
 | 
						|
                device_id,
 | 
						|
                friendly_name,
 | 
						|
                entity_id,
 | 
						|
                attribute,
 | 
						|
                device_class,
 | 
						|
                invert,
 | 
						|
                max_samples,
 | 
						|
                min_gradient,
 | 
						|
                sample_duration,
 | 
						|
            )
 | 
						|
        )
 | 
						|
    if not sensors:
 | 
						|
        _LOGGER.error("No sensors added")
 | 
						|
        return
 | 
						|
    add_entities(sensors)
 | 
						|
 | 
						|
 | 
						|
class SensorTrend(BinarySensorEntity):
 | 
						|
    """Representation of a trend Sensor."""
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        hass,
 | 
						|
        device_id,
 | 
						|
        friendly_name,
 | 
						|
        entity_id,
 | 
						|
        attribute,
 | 
						|
        device_class,
 | 
						|
        invert,
 | 
						|
        max_samples,
 | 
						|
        min_gradient,
 | 
						|
        sample_duration,
 | 
						|
    ):
 | 
						|
        """Initialize the sensor."""
 | 
						|
        self._hass = hass
 | 
						|
        self.entity_id = generate_entity_id(ENTITY_ID_FORMAT, device_id, hass=hass)
 | 
						|
        self._name = friendly_name
 | 
						|
        self._entity_id = entity_id
 | 
						|
        self._attribute = attribute
 | 
						|
        self._device_class = device_class
 | 
						|
        self._invert = invert
 | 
						|
        self._sample_duration = sample_duration
 | 
						|
        self._min_gradient = min_gradient
 | 
						|
        self._gradient = None
 | 
						|
        self._state = None
 | 
						|
        self.samples = deque(maxlen=max_samples)
 | 
						|
 | 
						|
    @property
 | 
						|
    def name(self):
 | 
						|
        """Return the name of the sensor."""
 | 
						|
        return self._name
 | 
						|
 | 
						|
    @property
 | 
						|
    def is_on(self):
 | 
						|
        """Return true if sensor is on."""
 | 
						|
        return self._state
 | 
						|
 | 
						|
    @property
 | 
						|
    def device_class(self):
 | 
						|
        """Return the sensor class of the sensor."""
 | 
						|
        return self._device_class
 | 
						|
 | 
						|
    @property
 | 
						|
    def extra_state_attributes(self):
 | 
						|
        """Return the state attributes of the sensor."""
 | 
						|
        return {
 | 
						|
            ATTR_ENTITY_ID: self._entity_id,
 | 
						|
            ATTR_FRIENDLY_NAME: self._name,
 | 
						|
            ATTR_GRADIENT: self._gradient,
 | 
						|
            ATTR_INVERT: self._invert,
 | 
						|
            ATTR_MIN_GRADIENT: self._min_gradient,
 | 
						|
            ATTR_SAMPLE_COUNT: len(self.samples),
 | 
						|
            ATTR_SAMPLE_DURATION: self._sample_duration,
 | 
						|
        }
 | 
						|
 | 
						|
    @property
 | 
						|
    def should_poll(self):
 | 
						|
        """No polling needed."""
 | 
						|
        return False
 | 
						|
 | 
						|
    async def async_added_to_hass(self):
 | 
						|
        """Complete device setup after being added to hass."""
 | 
						|
 | 
						|
        @callback
 | 
						|
        def trend_sensor_state_listener(event):
 | 
						|
            """Handle state changes on the observed device."""
 | 
						|
            new_state = event.data.get("new_state")
 | 
						|
            if new_state is None:
 | 
						|
                return
 | 
						|
            try:
 | 
						|
                if self._attribute:
 | 
						|
                    state = new_state.attributes.get(self._attribute)
 | 
						|
                else:
 | 
						|
                    state = new_state.state
 | 
						|
                if state not in (STATE_UNKNOWN, STATE_UNAVAILABLE):
 | 
						|
                    sample = (new_state.last_updated.timestamp(), float(state))
 | 
						|
                    self.samples.append(sample)
 | 
						|
                    self.async_schedule_update_ha_state(True)
 | 
						|
            except (ValueError, TypeError) as ex:
 | 
						|
                _LOGGER.error(ex)
 | 
						|
 | 
						|
        self.async_on_remove(
 | 
						|
            async_track_state_change_event(
 | 
						|
                self.hass, [self._entity_id], trend_sensor_state_listener
 | 
						|
            )
 | 
						|
        )
 | 
						|
 | 
						|
    async def async_update(self):
 | 
						|
        """Get the latest data and update the states."""
 | 
						|
        # Remove outdated samples
 | 
						|
        if self._sample_duration > 0:
 | 
						|
            cutoff = utcnow().timestamp() - self._sample_duration
 | 
						|
            while self.samples and self.samples[0][0] < cutoff:
 | 
						|
                self.samples.popleft()
 | 
						|
 | 
						|
        if len(self.samples) < 2:
 | 
						|
            return
 | 
						|
 | 
						|
        # Calculate gradient of linear trend
 | 
						|
        await self.hass.async_add_executor_job(self._calculate_gradient)
 | 
						|
 | 
						|
        # Update state
 | 
						|
        self._state = (
 | 
						|
            abs(self._gradient) > abs(self._min_gradient)
 | 
						|
            and math.copysign(self._gradient, self._min_gradient) == self._gradient
 | 
						|
        )
 | 
						|
 | 
						|
        if self._invert:
 | 
						|
            self._state = not self._state
 | 
						|
 | 
						|
    def _calculate_gradient(self):
 | 
						|
        """Compute the linear trend gradient of the current samples.
 | 
						|
 | 
						|
        This need run inside executor.
 | 
						|
        """
 | 
						|
        timestamps = np.array([t for t, _ in self.samples])
 | 
						|
        values = np.array([s for _, s in self.samples])
 | 
						|
        coeffs = np.polyfit(timestamps, values, 1)
 | 
						|
        self._gradient = coeffs[0]
 |