186 lines
5.8 KiB
Python
186 lines
5.8 KiB
Python
"""Person detection using Sighthound cloud service."""
|
|
from __future__ import annotations
|
|
|
|
import io
|
|
import logging
|
|
from pathlib import Path
|
|
|
|
from PIL import Image, ImageDraw, UnidentifiedImageError
|
|
import simplehound.core as hound
|
|
import voluptuous as vol
|
|
|
|
from homeassistant.components.image_processing import (
|
|
PLATFORM_SCHEMA,
|
|
ImageProcessingEntity,
|
|
)
|
|
from homeassistant.const import (
|
|
ATTR_ENTITY_ID,
|
|
CONF_API_KEY,
|
|
CONF_ENTITY_ID,
|
|
CONF_NAME,
|
|
CONF_SOURCE,
|
|
)
|
|
from homeassistant.core import HomeAssistant, split_entity_id
|
|
import homeassistant.helpers.config_validation as cv
|
|
from homeassistant.helpers.entity_platform import AddEntitiesCallback
|
|
from homeassistant.helpers.typing import ConfigType, DiscoveryInfoType
|
|
import homeassistant.util.dt as dt_util
|
|
from homeassistant.util.pil import draw_box
|
|
|
|
_LOGGER = logging.getLogger(__name__)
|
|
|
|
EVENT_PERSON_DETECTED = "sighthound.person_detected"
|
|
|
|
ATTR_BOUNDING_BOX = "bounding_box"
|
|
ATTR_PEOPLE = "people"
|
|
CONF_ACCOUNT_TYPE = "account_type"
|
|
CONF_SAVE_FILE_FOLDER = "save_file_folder"
|
|
CONF_SAVE_TIMESTAMPTED_FILE = "save_timestamped_file"
|
|
DATETIME_FORMAT = "%Y-%m-%d_%H:%M:%S"
|
|
DEV = "dev"
|
|
PROD = "prod"
|
|
|
|
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend(
|
|
{
|
|
vol.Required(CONF_API_KEY): cv.string,
|
|
vol.Optional(CONF_ACCOUNT_TYPE, default=DEV): vol.In([DEV, PROD]),
|
|
vol.Optional(CONF_SAVE_FILE_FOLDER): cv.isdir,
|
|
vol.Optional(CONF_SAVE_TIMESTAMPTED_FILE, default=False): cv.boolean,
|
|
}
|
|
)
|
|
|
|
|
|
def setup_platform(
|
|
hass: HomeAssistant,
|
|
config: ConfigType,
|
|
add_entities: AddEntitiesCallback,
|
|
discovery_info: DiscoveryInfoType | None = None,
|
|
) -> None:
|
|
"""Set up the platform."""
|
|
# Validate credentials by processing image.
|
|
api_key = config[CONF_API_KEY]
|
|
account_type = config[CONF_ACCOUNT_TYPE]
|
|
api = hound.cloud(api_key, account_type)
|
|
try:
|
|
api.detect(b"Test")
|
|
except hound.SimplehoundException as exc:
|
|
_LOGGER.error("Sighthound error %s setup aborted", exc)
|
|
return
|
|
|
|
if save_file_folder := config.get(CONF_SAVE_FILE_FOLDER):
|
|
save_file_folder = Path(save_file_folder)
|
|
|
|
entities = []
|
|
for camera in config[CONF_SOURCE]:
|
|
sighthound = SighthoundEntity(
|
|
api,
|
|
camera[CONF_ENTITY_ID],
|
|
camera.get(CONF_NAME),
|
|
save_file_folder,
|
|
config[CONF_SAVE_TIMESTAMPTED_FILE],
|
|
)
|
|
entities.append(sighthound)
|
|
add_entities(entities)
|
|
|
|
|
|
class SighthoundEntity(ImageProcessingEntity):
|
|
"""Create a sighthound entity."""
|
|
|
|
_attr_unit_of_measurement = ATTR_PEOPLE
|
|
|
|
def __init__(
|
|
self, api, camera_entity, name, save_file_folder, save_timestamped_file
|
|
):
|
|
"""Init."""
|
|
self._api = api
|
|
self._camera = camera_entity
|
|
if name:
|
|
self._name = name
|
|
else:
|
|
camera_name = split_entity_id(camera_entity)[1]
|
|
self._name = f"sighthound_{camera_name}"
|
|
self._state = None
|
|
self._last_detection = None
|
|
self._image_width = None
|
|
self._image_height = None
|
|
self._save_file_folder = save_file_folder
|
|
self._save_timestamped_file = save_timestamped_file
|
|
|
|
def process_image(self, image):
|
|
"""Process an image."""
|
|
detections = self._api.detect(image)
|
|
people = hound.get_people(detections)
|
|
self._state = len(people)
|
|
if self._state > 0:
|
|
self._last_detection = dt_util.now().strftime(DATETIME_FORMAT)
|
|
|
|
metadata = hound.get_metadata(detections)
|
|
self._image_width = metadata["image_width"]
|
|
self._image_height = metadata["image_height"]
|
|
for person in people:
|
|
self.fire_person_detected_event(person)
|
|
if self._save_file_folder and self._state > 0:
|
|
self.save_image(image, people, self._save_file_folder)
|
|
|
|
def fire_person_detected_event(self, person):
|
|
"""Send event with detected total_persons."""
|
|
self.hass.bus.fire(
|
|
EVENT_PERSON_DETECTED,
|
|
{
|
|
ATTR_ENTITY_ID: self.entity_id,
|
|
ATTR_BOUNDING_BOX: hound.bbox_to_tf_style(
|
|
person["boundingBox"], self._image_width, self._image_height
|
|
),
|
|
},
|
|
)
|
|
|
|
def save_image(self, image, people, directory):
|
|
"""Save a timestamped image with bounding boxes around targets."""
|
|
try:
|
|
img = Image.open(io.BytesIO(bytearray(image))).convert("RGB")
|
|
except UnidentifiedImageError:
|
|
_LOGGER.warning("Sighthound unable to process image, bad data")
|
|
return
|
|
draw = ImageDraw.Draw(img)
|
|
|
|
for person in people:
|
|
box = hound.bbox_to_tf_style(
|
|
person["boundingBox"], self._image_width, self._image_height
|
|
)
|
|
draw_box(draw, box, self._image_width, self._image_height)
|
|
|
|
latest_save_path = directory / f"{self._name}_latest.jpg"
|
|
img.save(latest_save_path)
|
|
|
|
if self._save_timestamped_file:
|
|
timestamp_save_path = directory / f"{self._name}_{self._last_detection}.jpg"
|
|
img.save(timestamp_save_path)
|
|
_LOGGER.info("Sighthound saved file %s", timestamp_save_path)
|
|
|
|
@property
|
|
def camera_entity(self):
|
|
"""Return camera entity id from process pictures."""
|
|
return self._camera
|
|
|
|
@property
|
|
def name(self):
|
|
"""Return the name of the sensor."""
|
|
return self._name
|
|
|
|
@property
|
|
def should_poll(self):
|
|
"""Return the polling state."""
|
|
return False
|
|
|
|
@property
|
|
def state(self):
|
|
"""Return the state of the entity."""
|
|
return self._state
|
|
|
|
@property
|
|
def extra_state_attributes(self):
|
|
"""Return the attributes."""
|
|
if not self._last_detection:
|
|
return {}
|
|
return {"last_person": self._last_detection}
|