core/homeassistant/components/statistics/sensor.py

399 lines
14 KiB
Python

"""Support for statistics for sensor values."""
from collections import deque
import logging
import statistics
import voluptuous as vol
from homeassistant.components.recorder.models import States
from homeassistant.components.recorder.util import execute, session_scope
from homeassistant.components.sensor import PLATFORM_SCHEMA, SensorEntity
from homeassistant.const import (
ATTR_UNIT_OF_MEASUREMENT,
CONF_ENTITY_ID,
CONF_NAME,
EVENT_HOMEASSISTANT_START,
STATE_UNAVAILABLE,
STATE_UNKNOWN,
)
from homeassistant.core import callback
from homeassistant.helpers import config_validation as cv
from homeassistant.helpers.event import (
async_track_point_in_utc_time,
async_track_state_change_event,
)
from homeassistant.helpers.reload import async_setup_reload_service
from homeassistant.util import dt as dt_util
from . import DOMAIN, PLATFORMS
_LOGGER = logging.getLogger(__name__)
ATTR_AVERAGE_CHANGE = "average_change"
ATTR_CHANGE = "change"
ATTR_CHANGE_RATE = "change_rate"
ATTR_COUNT = "count"
ATTR_MAX_AGE = "max_age"
ATTR_MAX_VALUE = "max_value"
ATTR_MEAN = "mean"
ATTR_MEDIAN = "median"
ATTR_MIN_AGE = "min_age"
ATTR_MIN_VALUE = "min_value"
ATTR_QUANTILES = "quantiles"
ATTR_SAMPLING_SIZE = "sampling_size"
ATTR_STANDARD_DEVIATION = "standard_deviation"
ATTR_TOTAL = "total"
ATTR_VARIANCE = "variance"
CONF_SAMPLING_SIZE = "sampling_size"
CONF_MAX_AGE = "max_age"
CONF_PRECISION = "precision"
CONF_QUANTILE_INTERVALS = "quantile_intervals"
CONF_QUANTILE_METHOD = "quantile_method"
DEFAULT_NAME = "Stats"
DEFAULT_SIZE = 20
DEFAULT_PRECISION = 2
DEFAULT_QUANTILE_INTERVALS = 4
DEFAULT_QUANTILE_METHOD = "exclusive"
ICON = "mdi:calculator"
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend(
{
vol.Required(CONF_ENTITY_ID): cv.entity_id,
vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string,
vol.Optional(CONF_SAMPLING_SIZE, default=DEFAULT_SIZE): vol.All(
vol.Coerce(int), vol.Range(min=1)
),
vol.Optional(CONF_MAX_AGE): cv.time_period,
vol.Optional(CONF_PRECISION, default=DEFAULT_PRECISION): vol.Coerce(int),
vol.Optional(
CONF_QUANTILE_INTERVALS, default=DEFAULT_QUANTILE_INTERVALS
): vol.All(vol.Coerce(int), vol.Range(min=2)),
vol.Optional(CONF_QUANTILE_METHOD, default=DEFAULT_QUANTILE_METHOD): vol.In(
["exclusive", "inclusive"]
),
}
)
async def async_setup_platform(hass, config, async_add_entities, discovery_info=None):
"""Set up the Statistics sensor."""
await async_setup_reload_service(hass, DOMAIN, PLATFORMS)
entity_id = config.get(CONF_ENTITY_ID)
name = config.get(CONF_NAME)
sampling_size = config.get(CONF_SAMPLING_SIZE)
max_age = config.get(CONF_MAX_AGE)
precision = config.get(CONF_PRECISION)
quantile_intervals = config.get(CONF_QUANTILE_INTERVALS)
quantile_method = config.get(CONF_QUANTILE_METHOD)
async_add_entities(
[
StatisticsSensor(
entity_id,
name,
sampling_size,
max_age,
precision,
quantile_intervals,
quantile_method,
)
],
True,
)
return True
class StatisticsSensor(SensorEntity):
"""Representation of a Statistics sensor."""
def __init__(
self,
entity_id,
name,
sampling_size,
max_age,
precision,
quantile_intervals,
quantile_method,
):
"""Initialize the Statistics sensor."""
self._entity_id = entity_id
self.is_binary = self._entity_id.split(".")[0] == "binary_sensor"
self._name = name
self._sampling_size = sampling_size
self._max_age = max_age
self._precision = precision
self._quantile_intervals = quantile_intervals
self._quantile_method = quantile_method
self._unit_of_measurement = None
self.states = deque(maxlen=self._sampling_size)
self.ages = deque(maxlen=self._sampling_size)
self.count = 0
self.mean = self.median = self.quantiles = self.stdev = self.variance = None
self.total = self.min = self.max = None
self.min_age = self.max_age = None
self.change = self.average_change = self.change_rate = None
self._update_listener = None
async def async_added_to_hass(self):
"""Register callbacks."""
@callback
def async_stats_sensor_state_listener(event):
"""Handle the sensor state changes."""
new_state = event.data.get("new_state")
if new_state is None:
return
self._unit_of_measurement = new_state.attributes.get(
ATTR_UNIT_OF_MEASUREMENT
)
self._add_state_to_queue(new_state)
self.async_schedule_update_ha_state(True)
@callback
def async_stats_sensor_startup(_):
"""Add listener and get recorded state."""
_LOGGER.debug("Startup for %s", self.entity_id)
self.async_on_remove(
async_track_state_change_event(
self.hass, [self._entity_id], async_stats_sensor_state_listener
)
)
if "recorder" in self.hass.config.components:
# Only use the database if it's configured
self.hass.async_create_task(self._async_initialize_from_database())
self.hass.bus.async_listen_once(
EVENT_HOMEASSISTANT_START, async_stats_sensor_startup
)
def _add_state_to_queue(self, new_state):
"""Add the state to the queue."""
if new_state.state in (STATE_UNKNOWN, STATE_UNAVAILABLE):
return
try:
if self.is_binary:
self.states.append(new_state.state)
else:
self.states.append(float(new_state.state))
self.ages.append(new_state.last_updated)
except ValueError:
_LOGGER.error(
"%s: parsing error, expected number and received %s",
self.entity_id,
new_state.state,
)
@property
def name(self):
"""Return the name of the sensor."""
return self._name
@property
def native_value(self):
"""Return the state of the sensor."""
return self.mean if not self.is_binary else self.count
@property
def native_unit_of_measurement(self):
"""Return the unit the value is expressed in."""
return self._unit_of_measurement if not self.is_binary else None
@property
def should_poll(self):
"""No polling needed."""
return False
@property
def extra_state_attributes(self):
"""Return the state attributes of the sensor."""
if not self.is_binary:
return {
ATTR_SAMPLING_SIZE: self._sampling_size,
ATTR_COUNT: self.count,
ATTR_MEAN: self.mean,
ATTR_MEDIAN: self.median,
ATTR_QUANTILES: self.quantiles,
ATTR_STANDARD_DEVIATION: self.stdev,
ATTR_VARIANCE: self.variance,
ATTR_TOTAL: self.total,
ATTR_MIN_VALUE: self.min,
ATTR_MAX_VALUE: self.max,
ATTR_MIN_AGE: self.min_age,
ATTR_MAX_AGE: self.max_age,
ATTR_CHANGE: self.change,
ATTR_AVERAGE_CHANGE: self.average_change,
ATTR_CHANGE_RATE: self.change_rate,
}
@property
def icon(self):
"""Return the icon to use in the frontend, if any."""
return ICON
def _purge_old(self):
"""Remove states which are older than self._max_age."""
now = dt_util.utcnow()
_LOGGER.debug(
"%s: purging records older then %s(%s)",
self.entity_id,
dt_util.as_local(now - self._max_age),
self._max_age,
)
while self.ages and (now - self.ages[0]) > self._max_age:
_LOGGER.debug(
"%s: purging record with datetime %s(%s)",
self.entity_id,
dt_util.as_local(self.ages[0]),
(now - self.ages[0]),
)
self.ages.popleft()
self.states.popleft()
def _next_to_purge_timestamp(self):
"""Find the timestamp when the next purge would occur."""
if self.ages and self._max_age:
# Take the oldest entry from the ages list and add the configured max_age.
# If executed after purging old states, the result is the next timestamp
# in the future when the oldest state will expire.
return self.ages[0] + self._max_age
return None
async def async_update(self):
"""Get the latest data and updates the states."""
_LOGGER.debug("%s: updating statistics", self.entity_id)
if self._max_age is not None:
self._purge_old()
self.count = len(self.states)
if not self.is_binary:
try: # require only one data point
self.mean = round(statistics.mean(self.states), self._precision)
self.median = round(statistics.median(self.states), self._precision)
except statistics.StatisticsError as err:
_LOGGER.debug("%s: %s", self.entity_id, err)
self.mean = self.median = STATE_UNKNOWN
try: # require at least two data points
self.stdev = round(statistics.stdev(self.states), self._precision)
self.variance = round(statistics.variance(self.states), self._precision)
if self._quantile_intervals < self.count:
self.quantiles = [
round(quantile, self._precision)
for quantile in statistics.quantiles(
self.states,
n=self._quantile_intervals,
method=self._quantile_method,
)
]
except statistics.StatisticsError as err:
_LOGGER.debug("%s: %s", self.entity_id, err)
self.stdev = self.variance = self.quantiles = STATE_UNKNOWN
if self.states:
self.total = round(sum(self.states), self._precision)
self.min = round(min(self.states), self._precision)
self.max = round(max(self.states), self._precision)
self.min_age = self.ages[0]
self.max_age = self.ages[-1]
self.change = self.states[-1] - self.states[0]
self.average_change = self.change
self.change_rate = 0
if len(self.states) > 1:
self.average_change /= len(self.states) - 1
time_diff = (self.max_age - self.min_age).total_seconds()
if time_diff > 0:
self.change_rate = self.change / time_diff
self.change = round(self.change, self._precision)
self.average_change = round(self.average_change, self._precision)
self.change_rate = round(self.change_rate, self._precision)
else:
self.total = self.min = self.max = STATE_UNKNOWN
self.min_age = self.max_age = dt_util.utcnow()
self.change = self.average_change = STATE_UNKNOWN
self.change_rate = STATE_UNKNOWN
# If max_age is set, ensure to update again after the defined interval.
next_to_purge_timestamp = self._next_to_purge_timestamp()
if next_to_purge_timestamp:
_LOGGER.debug(
"%s: scheduling update at %s", self.entity_id, next_to_purge_timestamp
)
if self._update_listener:
self._update_listener()
self._update_listener = None
@callback
def _scheduled_update(now):
"""Timer callback for sensor update."""
_LOGGER.debug("%s: executing scheduled update", self.entity_id)
self.async_schedule_update_ha_state(True)
self._update_listener = None
self._update_listener = async_track_point_in_utc_time(
self.hass, _scheduled_update, next_to_purge_timestamp
)
async def _async_initialize_from_database(self):
"""Initialize the list of states from the database.
The query will get the list of states in DESCENDING order so that we
can limit the result to self._sample_size. Afterwards reverse the
list so that we get it in the right order again.
If MaxAge is provided then query will restrict to entries younger then
current datetime - MaxAge.
"""
_LOGGER.debug("%s: initializing values from the database", self.entity_id)
with session_scope(hass=self.hass) as session:
query = session.query(States).filter(
States.entity_id == self._entity_id.lower()
)
if self._max_age is not None:
records_older_then = dt_util.utcnow() - self._max_age
_LOGGER.debug(
"%s: retrieve records not older then %s",
self.entity_id,
records_older_then,
)
query = query.filter(States.last_updated >= records_older_then)
else:
_LOGGER.debug("%s: retrieving all records", self.entity_id)
query = query.order_by(States.last_updated.desc()).limit(
self._sampling_size
)
states = execute(query, to_native=True, validate_entity_ids=False)
for state in reversed(states):
self._add_state_to_queue(state)
self.async_schedule_update_ha_state(True)
_LOGGER.debug("%s: initializing from database completed", self.entity_id)