199 lines
6.0 KiB
Python
199 lines
6.0 KiB
Python
"""Support for OpenCV classification on images."""
|
|
from __future__ import annotations
|
|
|
|
from datetime import timedelta
|
|
import logging
|
|
|
|
import numpy as np
|
|
import requests
|
|
import voluptuous as vol
|
|
|
|
from homeassistant.components.image_processing import (
|
|
PLATFORM_SCHEMA,
|
|
ImageProcessingEntity,
|
|
)
|
|
from homeassistant.const import CONF_ENTITY_ID, CONF_NAME, CONF_SOURCE
|
|
from homeassistant.core import HomeAssistant, split_entity_id
|
|
import homeassistant.helpers.config_validation as cv
|
|
from homeassistant.helpers.entity_platform import AddEntitiesCallback
|
|
from homeassistant.helpers.typing import ConfigType, DiscoveryInfoType
|
|
|
|
try:
|
|
# Verify that the OpenCV python package is pre-installed
|
|
import cv2
|
|
|
|
CV2_IMPORTED = True
|
|
except ImportError:
|
|
CV2_IMPORTED = False
|
|
|
|
|
|
_LOGGER = logging.getLogger(__name__)
|
|
|
|
ATTR_MATCHES = "matches"
|
|
ATTR_TOTAL_MATCHES = "total_matches"
|
|
|
|
CASCADE_URL = (
|
|
"https://raw.githubusercontent.com/opencv/opencv/master/data/"
|
|
"lbpcascades/lbpcascade_frontalface.xml"
|
|
)
|
|
|
|
CONF_CLASSIFIER = "classifier"
|
|
CONF_FILE = "file"
|
|
CONF_MIN_SIZE = "min_size"
|
|
CONF_NEIGHBORS = "neighbors"
|
|
CONF_SCALE = "scale"
|
|
|
|
DEFAULT_CLASSIFIER_PATH = "lbp_frontalface.xml"
|
|
DEFAULT_MIN_SIZE = (30, 30)
|
|
DEFAULT_NEIGHBORS = 4
|
|
DEFAULT_SCALE = 1.1
|
|
DEFAULT_TIMEOUT = 10
|
|
|
|
SCAN_INTERVAL = timedelta(seconds=2)
|
|
|
|
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend(
|
|
{
|
|
vol.Optional(CONF_CLASSIFIER): {
|
|
cv.string: vol.Any(
|
|
cv.isfile,
|
|
vol.Schema(
|
|
{
|
|
vol.Required(CONF_FILE): cv.isfile,
|
|
vol.Optional(CONF_SCALE, DEFAULT_SCALE): float,
|
|
vol.Optional(
|
|
CONF_NEIGHBORS, DEFAULT_NEIGHBORS
|
|
): cv.positive_int,
|
|
vol.Optional(CONF_MIN_SIZE, DEFAULT_MIN_SIZE): vol.Schema(
|
|
vol.All(vol.Coerce(tuple), vol.ExactSequence([int, int]))
|
|
),
|
|
}
|
|
),
|
|
)
|
|
}
|
|
}
|
|
)
|
|
|
|
|
|
def _create_processor_from_config(hass, camera_entity, config):
|
|
"""Create an OpenCV processor from configuration."""
|
|
classifier_config = config.get(CONF_CLASSIFIER)
|
|
name = f"{config[CONF_NAME]} {split_entity_id(camera_entity)[1].replace('_', ' ')}"
|
|
|
|
processor = OpenCVImageProcessor(hass, camera_entity, name, classifier_config)
|
|
|
|
return processor
|
|
|
|
|
|
def _get_default_classifier(dest_path):
|
|
"""Download the default OpenCV classifier."""
|
|
_LOGGER.info("Downloading default classifier")
|
|
req = requests.get(CASCADE_URL, stream=True, timeout=10)
|
|
with open(dest_path, "wb") as fil:
|
|
for chunk in req.iter_content(chunk_size=1024):
|
|
if chunk: # filter out keep-alive new chunks
|
|
fil.write(chunk)
|
|
|
|
|
|
def setup_platform(
|
|
hass: HomeAssistant,
|
|
config: ConfigType,
|
|
add_entities: AddEntitiesCallback,
|
|
discovery_info: DiscoveryInfoType | None = None,
|
|
) -> None:
|
|
"""Set up the OpenCV image processing platform."""
|
|
if not CV2_IMPORTED:
|
|
_LOGGER.error(
|
|
"No OpenCV library found! Install or compile for your system "
|
|
"following instructions here: https://opencv.org/?s=releases"
|
|
)
|
|
return
|
|
|
|
entities = []
|
|
if CONF_CLASSIFIER not in config:
|
|
dest_path = hass.config.path(DEFAULT_CLASSIFIER_PATH)
|
|
_get_default_classifier(dest_path)
|
|
config[CONF_CLASSIFIER] = {"Face": dest_path}
|
|
|
|
for camera in config[CONF_SOURCE]:
|
|
entities.append(
|
|
OpenCVImageProcessor(
|
|
hass,
|
|
camera[CONF_ENTITY_ID],
|
|
camera.get(CONF_NAME),
|
|
config[CONF_CLASSIFIER],
|
|
)
|
|
)
|
|
|
|
add_entities(entities)
|
|
|
|
|
|
class OpenCVImageProcessor(ImageProcessingEntity):
|
|
"""Representation of an OpenCV image processor."""
|
|
|
|
def __init__(self, hass, camera_entity, name, classifiers):
|
|
"""Initialize the OpenCV entity."""
|
|
self.hass = hass
|
|
self._camera_entity = camera_entity
|
|
if name:
|
|
self._name = name
|
|
else:
|
|
self._name = f"OpenCV {split_entity_id(camera_entity)[1]}"
|
|
self._classifiers = classifiers
|
|
self._matches = {}
|
|
self._total_matches = 0
|
|
self._last_image = None
|
|
|
|
@property
|
|
def camera_entity(self):
|
|
"""Return camera entity id from process pictures."""
|
|
return self._camera_entity
|
|
|
|
@property
|
|
def name(self):
|
|
"""Return the name of the image processor."""
|
|
return self._name
|
|
|
|
@property
|
|
def state(self):
|
|
"""Return the state of the entity."""
|
|
return self._total_matches
|
|
|
|
@property
|
|
def extra_state_attributes(self):
|
|
"""Return device specific state attributes."""
|
|
return {ATTR_MATCHES: self._matches, ATTR_TOTAL_MATCHES: self._total_matches}
|
|
|
|
def process_image(self, image):
|
|
"""Process the image."""
|
|
cv_image = cv2.imdecode(np.asarray(bytearray(image)), cv2.IMREAD_UNCHANGED)
|
|
|
|
matches = {}
|
|
total_matches = 0
|
|
|
|
for name, classifier in self._classifiers.items():
|
|
scale = DEFAULT_SCALE
|
|
neighbors = DEFAULT_NEIGHBORS
|
|
min_size = DEFAULT_MIN_SIZE
|
|
if isinstance(classifier, dict):
|
|
path = classifier[CONF_FILE]
|
|
scale = classifier.get(CONF_SCALE, scale)
|
|
neighbors = classifier.get(CONF_NEIGHBORS, neighbors)
|
|
min_size = classifier.get(CONF_MIN_SIZE, min_size)
|
|
else:
|
|
path = classifier
|
|
|
|
cascade = cv2.CascadeClassifier(path)
|
|
|
|
detections = cascade.detectMultiScale(
|
|
cv_image, scaleFactor=scale, minNeighbors=neighbors, minSize=min_size
|
|
)
|
|
regions = []
|
|
for x, y, w, h in detections:
|
|
regions.append((int(x), int(y), int(w), int(h)))
|
|
total_matches += 1
|
|
|
|
matches[name] = regions
|
|
|
|
self._matches = matches
|
|
self._total_matches = total_matches
|