core/homeassistant/components/trend/binary_sensor.py

225 lines
6.8 KiB
Python

"""A sensor that monitors trends in other components."""
from collections import deque
import logging
import math
import numpy as np
import voluptuous as vol
from homeassistant.components.binary_sensor import (
DEVICE_CLASSES_SCHEMA,
ENTITY_ID_FORMAT,
PLATFORM_SCHEMA,
BinarySensorEntity,
)
from homeassistant.const import (
ATTR_ENTITY_ID,
ATTR_FRIENDLY_NAME,
CONF_ATTRIBUTE,
CONF_DEVICE_CLASS,
CONF_ENTITY_ID,
CONF_FRIENDLY_NAME,
CONF_SENSORS,
STATE_UNAVAILABLE,
STATE_UNKNOWN,
)
from homeassistant.core import callback
import homeassistant.helpers.config_validation as cv
from homeassistant.helpers.entity import generate_entity_id
from homeassistant.helpers.event import async_track_state_change_event
from homeassistant.helpers.reload import setup_reload_service
from homeassistant.util import utcnow
from . import DOMAIN, PLATFORMS
_LOGGER = logging.getLogger(__name__)
ATTR_ATTRIBUTE = "attribute"
ATTR_GRADIENT = "gradient"
ATTR_MIN_GRADIENT = "min_gradient"
ATTR_INVERT = "invert"
ATTR_SAMPLE_DURATION = "sample_duration"
ATTR_SAMPLE_COUNT = "sample_count"
CONF_INVERT = "invert"
CONF_MAX_SAMPLES = "max_samples"
CONF_MIN_GRADIENT = "min_gradient"
CONF_SAMPLE_DURATION = "sample_duration"
SENSOR_SCHEMA = vol.Schema(
{
vol.Required(CONF_ENTITY_ID): cv.entity_id,
vol.Optional(CONF_ATTRIBUTE): cv.string,
vol.Optional(CONF_DEVICE_CLASS): DEVICE_CLASSES_SCHEMA,
vol.Optional(CONF_FRIENDLY_NAME): cv.string,
vol.Optional(CONF_INVERT, default=False): cv.boolean,
vol.Optional(CONF_MAX_SAMPLES, default=2): cv.positive_int,
vol.Optional(CONF_MIN_GRADIENT, default=0.0): vol.Coerce(float),
vol.Optional(CONF_SAMPLE_DURATION, default=0): cv.positive_int,
}
)
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend(
{vol.Required(CONF_SENSORS): cv.schema_with_slug_keys(SENSOR_SCHEMA)}
)
def setup_platform(hass, config, add_entities, discovery_info=None):
"""Set up the trend sensors."""
setup_reload_service(hass, DOMAIN, PLATFORMS)
sensors = []
for device_id, device_config in config[CONF_SENSORS].items():
entity_id = device_config[ATTR_ENTITY_ID]
attribute = device_config.get(CONF_ATTRIBUTE)
device_class = device_config.get(CONF_DEVICE_CLASS)
friendly_name = device_config.get(ATTR_FRIENDLY_NAME, device_id)
invert = device_config[CONF_INVERT]
max_samples = device_config[CONF_MAX_SAMPLES]
min_gradient = device_config[CONF_MIN_GRADIENT]
sample_duration = device_config[CONF_SAMPLE_DURATION]
sensors.append(
SensorTrend(
hass,
device_id,
friendly_name,
entity_id,
attribute,
device_class,
invert,
max_samples,
min_gradient,
sample_duration,
)
)
if not sensors:
_LOGGER.error("No sensors added")
return
add_entities(sensors)
class SensorTrend(BinarySensorEntity):
"""Representation of a trend Sensor."""
def __init__(
self,
hass,
device_id,
friendly_name,
entity_id,
attribute,
device_class,
invert,
max_samples,
min_gradient,
sample_duration,
):
"""Initialize the sensor."""
self._hass = hass
self.entity_id = generate_entity_id(ENTITY_ID_FORMAT, device_id, hass=hass)
self._name = friendly_name
self._entity_id = entity_id
self._attribute = attribute
self._device_class = device_class
self._invert = invert
self._sample_duration = sample_duration
self._min_gradient = min_gradient
self._gradient = None
self._state = None
self.samples = deque(maxlen=max_samples)
@property
def name(self):
"""Return the name of the sensor."""
return self._name
@property
def is_on(self):
"""Return true if sensor is on."""
return self._state
@property
def device_class(self):
"""Return the sensor class of the sensor."""
return self._device_class
@property
def extra_state_attributes(self):
"""Return the state attributes of the sensor."""
return {
ATTR_ENTITY_ID: self._entity_id,
ATTR_FRIENDLY_NAME: self._name,
ATTR_GRADIENT: self._gradient,
ATTR_INVERT: self._invert,
ATTR_MIN_GRADIENT: self._min_gradient,
ATTR_SAMPLE_COUNT: len(self.samples),
ATTR_SAMPLE_DURATION: self._sample_duration,
}
@property
def should_poll(self):
"""No polling needed."""
return False
async def async_added_to_hass(self):
"""Complete device setup after being added to hass."""
@callback
def trend_sensor_state_listener(event):
"""Handle state changes on the observed device."""
new_state = event.data.get("new_state")
if new_state is None:
return
try:
if self._attribute:
state = new_state.attributes.get(self._attribute)
else:
state = new_state.state
if state not in (STATE_UNKNOWN, STATE_UNAVAILABLE):
sample = (new_state.last_updated.timestamp(), float(state))
self.samples.append(sample)
self.async_schedule_update_ha_state(True)
except (ValueError, TypeError) as ex:
_LOGGER.error(ex)
self.async_on_remove(
async_track_state_change_event(
self.hass, [self._entity_id], trend_sensor_state_listener
)
)
async def async_update(self):
"""Get the latest data and update the states."""
# Remove outdated samples
if self._sample_duration > 0:
cutoff = utcnow().timestamp() - self._sample_duration
while self.samples and self.samples[0][0] < cutoff:
self.samples.popleft()
if len(self.samples) < 2:
return
# Calculate gradient of linear trend
await self.hass.async_add_executor_job(self._calculate_gradient)
# Update state
self._state = (
abs(self._gradient) > abs(self._min_gradient)
and math.copysign(self._gradient, self._min_gradient) == self._gradient
)
if self._invert:
self._state = not self._state
def _calculate_gradient(self):
"""Compute the linear trend gradient of the current samples.
This need run inside executor.
"""
timestamps = np.array([t for t, _ in self.samples])
values = np.array([s for _, s in self.samples])
coeffs = np.polyfit(timestamps, values, 1)
self._gradient = coeffs[0]