core/homeassistant/components/image_processing/tensorflow.py

337 lines
12 KiB
Python

"""Support for performing TensorFlow classification on images."""
import logging
import os
import sys
import voluptuous as vol
from homeassistant.components.image_processing import (
CONF_CONFIDENCE, CONF_ENTITY_ID, CONF_NAME, CONF_SOURCE, PLATFORM_SCHEMA,
ImageProcessingEntity)
from homeassistant.core import split_entity_id
from homeassistant.helpers import template
import homeassistant.helpers.config_validation as cv
REQUIREMENTS = ['numpy==1.16.2', 'pillow==5.4.1', 'protobuf==3.6.1']
_LOGGER = logging.getLogger(__name__)
ATTR_MATCHES = 'matches'
ATTR_SUMMARY = 'summary'
ATTR_TOTAL_MATCHES = 'total_matches'
CONF_AREA = 'area'
CONF_BOTTOM = 'bottom'
CONF_CATEGORIES = 'categories'
CONF_CATEGORY = 'category'
CONF_FILE_OUT = 'file_out'
CONF_GRAPH = 'graph'
CONF_LABELS = 'labels'
CONF_LEFT = 'left'
CONF_MODEL = 'model'
CONF_MODEL_DIR = 'model_dir'
CONF_RIGHT = 'right'
CONF_TOP = 'top'
AREA_SCHEMA = vol.Schema({
vol.Optional(CONF_BOTTOM, default=1): cv.small_float,
vol.Optional(CONF_LEFT, default=0): cv.small_float,
vol.Optional(CONF_RIGHT, default=1): cv.small_float,
vol.Optional(CONF_TOP, default=0): cv.small_float,
})
CATEGORY_SCHEMA = vol.Schema({
vol.Required(CONF_CATEGORY): cv.string,
vol.Optional(CONF_AREA): AREA_SCHEMA,
})
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
vol.Optional(CONF_FILE_OUT, default=[]):
vol.All(cv.ensure_list, [cv.template]),
vol.Required(CONF_MODEL): vol.Schema({
vol.Required(CONF_GRAPH): cv.isfile,
vol.Optional(CONF_AREA): AREA_SCHEMA,
vol.Optional(CONF_CATEGORIES, default=[]):
vol.All(cv.ensure_list, [vol.Any(cv.string, CATEGORY_SCHEMA)]),
vol.Optional(CONF_LABELS): cv.isfile,
vol.Optional(CONF_MODEL_DIR): cv.isdir,
})
})
def draw_box(draw, box, img_width,
img_height, text='', color=(255, 255, 0)):
"""Draw bounding box on image."""
ymin, xmin, ymax, xmax = box
(left, right, top, bottom) = (xmin * img_width, xmax * img_width,
ymin * img_height, ymax * img_height)
draw.line([(left, top), (left, bottom), (right, bottom),
(right, top), (left, top)], width=5, fill=color)
if text:
draw.text((left, abs(top-15)), text, fill=color)
def setup_platform(hass, config, add_entities, discovery_info=None):
"""Set up the TensorFlow image processing platform."""
model_config = config.get(CONF_MODEL)
model_dir = model_config.get(CONF_MODEL_DIR) \
or hass.config.path('tensorflow')
labels = model_config.get(CONF_LABELS) \
or hass.config.path('tensorflow', 'object_detection',
'data', 'mscoco_label_map.pbtxt')
# Make sure locations exist
if not os.path.isdir(model_dir) or not os.path.exists(labels):
_LOGGER.error("Unable to locate tensorflow models or label map")
return
# append custom model path to sys.path
sys.path.append(model_dir)
try:
# Verify that the TensorFlow Object Detection API is pre-installed
# pylint: disable=unused-import,unused-variable
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf # noqa
from object_detection.utils import label_map_util # noqa
except ImportError:
# pylint: disable=line-too-long
_LOGGER.error(
"No TensorFlow Object Detection library found! Install or compile "
"for your system following instructions here: "
"https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md") # noqa
return
try:
# Display warning that PIL will be used if no OpenCV is found.
# pylint: disable=unused-import,unused-variable
import cv2 # noqa
except ImportError:
_LOGGER.warning(
"No OpenCV library found. TensorFlow will process image with "
"PIL at reduced resolution")
# Set up Tensorflow graph, session, and label map to pass to processor
# pylint: disable=no-member
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(model_config.get(CONF_GRAPH), 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
session = tf.Session(graph=detection_graph)
label_map = label_map_util.load_labelmap(labels)
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes=90, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
entities = []
for camera in config[CONF_SOURCE]:
entities.append(TensorFlowImageProcessor(
hass, camera[CONF_ENTITY_ID], camera.get(CONF_NAME),
session, detection_graph, category_index, config))
add_entities(entities)
class TensorFlowImageProcessor(ImageProcessingEntity):
"""Representation of an TensorFlow image processor."""
def __init__(self, hass, camera_entity, name, session, detection_graph,
category_index, config):
"""Initialize the TensorFlow entity."""
model_config = config.get(CONF_MODEL)
self.hass = hass
self._camera_entity = camera_entity
if name:
self._name = name
else:
self._name = "TensorFlow {0}".format(
split_entity_id(camera_entity)[1])
self._session = session
self._graph = detection_graph
self._category_index = category_index
self._min_confidence = config.get(CONF_CONFIDENCE)
self._file_out = config.get(CONF_FILE_OUT)
# handle categories and specific detection areas
categories = model_config.get(CONF_CATEGORIES)
self._include_categories = []
self._category_areas = {}
for category in categories:
if isinstance(category, dict):
category_name = category.get(CONF_CATEGORY)
category_area = category.get(CONF_AREA)
self._include_categories.append(category_name)
self._category_areas[category_name] = [0, 0, 1, 1]
if category_area:
self._category_areas[category_name] = [
category_area.get(CONF_TOP),
category_area.get(CONF_LEFT),
category_area.get(CONF_BOTTOM),
category_area.get(CONF_RIGHT)
]
else:
self._include_categories.append(category)
self._category_areas[category] = [0, 0, 1, 1]
# Handle global detection area
self._area = [0, 0, 1, 1]
area_config = model_config.get(CONF_AREA)
if area_config:
self._area = [
area_config.get(CONF_TOP),
area_config.get(CONF_LEFT),
area_config.get(CONF_BOTTOM),
area_config.get(CONF_RIGHT)
]
template.attach(hass, self._file_out)
self._matches = {}
self._total_matches = 0
self._last_image = None
@property
def camera_entity(self):
"""Return camera entity id from process pictures."""
return self._camera_entity
@property
def name(self):
"""Return the name of the image processor."""
return self._name
@property
def state(self):
"""Return the state of the entity."""
return self._total_matches
@property
def device_state_attributes(self):
"""Return device specific state attributes."""
return {
ATTR_MATCHES: self._matches,
ATTR_SUMMARY: {category: len(values)
for category, values in self._matches.items()},
ATTR_TOTAL_MATCHES: self._total_matches
}
def _save_image(self, image, matches, paths):
from PIL import Image, ImageDraw
import io
img = Image.open(io.BytesIO(bytearray(image))).convert('RGB')
img_width, img_height = img.size
draw = ImageDraw.Draw(img)
# Draw custom global region/area
if self._area != [0, 0, 1, 1]:
draw_box(draw, self._area,
img_width, img_height, "Detection Area", (0, 255, 255))
for category, values in matches.items():
# Draw custom category regions/areas
if (category in self._category_areas
and self._category_areas[category] != [0, 0, 1, 1]):
label = "{} Detection Area".format(category.capitalize())
draw_box(
draw, self._category_areas[category], img_width,
img_height, label, (0, 255, 0))
# Draw detected objects
for instance in values:
label = "{0} {1:.1f}%".format(category, instance['score'])
draw_box(
draw, instance['box'], img_width, img_height, label,
(255, 255, 0))
for path in paths:
_LOGGER.info("Saving results image to %s", path)
img.save(path)
def process_image(self, image):
"""Process the image."""
import numpy as np
try:
import cv2 # pylint: disable=import-error
img = cv2.imdecode(
np.asarray(bytearray(image)), cv2.IMREAD_UNCHANGED)
inp = img[:, :, [2, 1, 0]] # BGR->RGB
inp_expanded = inp.reshape(1, inp.shape[0], inp.shape[1], 3)
except ImportError:
from PIL import Image
import io
img = Image.open(io.BytesIO(bytearray(image))).convert('RGB')
img.thumbnail((460, 460), Image.ANTIALIAS)
img_width, img_height = img.size
inp = np.array(img.getdata()).reshape(
(img_height, img_width, 3)).astype(np.uint8)
inp_expanded = np.expand_dims(inp, axis=0)
image_tensor = self._graph.get_tensor_by_name('image_tensor:0')
boxes = self._graph.get_tensor_by_name('detection_boxes:0')
scores = self._graph.get_tensor_by_name('detection_scores:0')
classes = self._graph.get_tensor_by_name('detection_classes:0')
boxes, scores, classes = self._session.run(
[boxes, scores, classes],
feed_dict={image_tensor: inp_expanded})
boxes, scores, classes = map(np.squeeze, [boxes, scores, classes])
classes = classes.astype(int)
matches = {}
total_matches = 0
for box, score, obj_class in zip(boxes, scores, classes):
score = score * 100
boxes = box.tolist()
# Exclude matches below min confidence value
if score < self._min_confidence:
continue
# Exclude matches outside global area definition
if (boxes[0] < self._area[0] or boxes[1] < self._area[1]
or boxes[2] > self._area[2] or boxes[3] > self._area[3]):
continue
category = self._category_index[obj_class]['name']
# Exclude unlisted categories
if (self._include_categories
and category not in self._include_categories):
continue
# Exclude matches outside category specific area definition
if (self._category_areas
and (boxes[0] < self._category_areas[category][0]
or boxes[1] < self._category_areas[category][1]
or boxes[2] > self._category_areas[category][2]
or boxes[3] > self._category_areas[category][3])):
continue
# If we got here, we should include it
if category not in matches.keys():
matches[category] = []
matches[category].append({
'score': float(score),
'box': boxes
})
total_matches += 1
# Save Images
if total_matches and self._file_out:
paths = []
for path_template in self._file_out:
if isinstance(path_template, template.Template):
paths.append(path_template.render(
camera_entity=self._camera_entity))
else:
paths.append(path_template)
self._save_image(image, matches, paths)
self._matches = matches
self._total_matches = total_matches