184 lines
5.6 KiB
Python
184 lines
5.6 KiB
Python
"""Support for OpenCV classification on images."""
|
|
from datetime import timedelta
|
|
import logging
|
|
|
|
import requests
|
|
import voluptuous as vol
|
|
|
|
from homeassistant.components.image_processing import (
|
|
CONF_ENTITY_ID, CONF_NAME, CONF_SOURCE, PLATFORM_SCHEMA,
|
|
ImageProcessingEntity)
|
|
from homeassistant.core import split_entity_id
|
|
import homeassistant.helpers.config_validation as cv
|
|
|
|
REQUIREMENTS = ['numpy==1.16.2']
|
|
|
|
_LOGGER = logging.getLogger(__name__)
|
|
|
|
ATTR_MATCHES = 'matches'
|
|
ATTR_TOTAL_MATCHES = 'total_matches'
|
|
|
|
CASCADE_URL = \
|
|
'https://raw.githubusercontent.com/opencv/opencv/master/data/' + \
|
|
'lbpcascades/lbpcascade_frontalface.xml'
|
|
|
|
CONF_CLASSIFIER = 'classifier'
|
|
CONF_FILE = 'file'
|
|
CONF_MIN_SIZE = 'min_size'
|
|
CONF_NEIGHBORS = 'neighbors'
|
|
CONF_SCALE = 'scale'
|
|
|
|
DEFAULT_CLASSIFIER_PATH = 'lbp_frontalface.xml'
|
|
DEFAULT_MIN_SIZE = (30, 30)
|
|
DEFAULT_NEIGHBORS = 4
|
|
DEFAULT_SCALE = 1.1
|
|
DEFAULT_TIMEOUT = 10
|
|
|
|
SCAN_INTERVAL = timedelta(seconds=2)
|
|
|
|
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
|
|
vol.Optional(CONF_CLASSIFIER): {
|
|
cv.string: vol.Any(
|
|
cv.isfile,
|
|
vol.Schema({
|
|
vol.Required(CONF_FILE): cv.isfile,
|
|
vol.Optional(CONF_SCALE, DEFAULT_SCALE): float,
|
|
vol.Optional(CONF_NEIGHBORS, DEFAULT_NEIGHBORS):
|
|
cv.positive_int,
|
|
vol.Optional(CONF_MIN_SIZE, DEFAULT_MIN_SIZE):
|
|
vol.Schema((int, int))
|
|
})
|
|
)
|
|
}
|
|
})
|
|
|
|
|
|
def _create_processor_from_config(hass, camera_entity, config):
|
|
"""Create an OpenCV processor from configuration."""
|
|
classifier_config = config.get(CONF_CLASSIFIER)
|
|
name = '{} {}'.format(
|
|
config[CONF_NAME], split_entity_id(camera_entity)[1].replace('_', ' '))
|
|
|
|
processor = OpenCVImageProcessor(
|
|
hass, camera_entity, name, classifier_config)
|
|
|
|
return processor
|
|
|
|
|
|
def _get_default_classifier(dest_path):
|
|
"""Download the default OpenCV classifier."""
|
|
_LOGGER.info("Downloading default classifier")
|
|
req = requests.get(CASCADE_URL, stream=True)
|
|
with open(dest_path, 'wb') as fil:
|
|
for chunk in req.iter_content(chunk_size=1024):
|
|
if chunk: # filter out keep-alive new chunks
|
|
fil.write(chunk)
|
|
|
|
|
|
def setup_platform(hass, config, add_entities, discovery_info=None):
|
|
"""Set up the OpenCV image processing platform."""
|
|
try:
|
|
# Verify that the OpenCV python package is pre-installed
|
|
# pylint: disable=unused-import,unused-variable
|
|
import cv2 # noqa
|
|
except ImportError:
|
|
_LOGGER.error(
|
|
"No OpenCV library found! Install or compile for your system "
|
|
"following instructions here: http://opencv.org/releases.html")
|
|
return
|
|
|
|
entities = []
|
|
if CONF_CLASSIFIER not in config:
|
|
dest_path = hass.config.path(DEFAULT_CLASSIFIER_PATH)
|
|
_get_default_classifier(dest_path)
|
|
config[CONF_CLASSIFIER] = {
|
|
'Face': dest_path
|
|
}
|
|
|
|
for camera in config[CONF_SOURCE]:
|
|
entities.append(OpenCVImageProcessor(
|
|
hass, camera[CONF_ENTITY_ID], camera.get(CONF_NAME),
|
|
config[CONF_CLASSIFIER]))
|
|
|
|
add_entities(entities)
|
|
|
|
|
|
class OpenCVImageProcessor(ImageProcessingEntity):
|
|
"""Representation of an OpenCV image processor."""
|
|
|
|
def __init__(self, hass, camera_entity, name, classifiers):
|
|
"""Initialize the OpenCV entity."""
|
|
self.hass = hass
|
|
self._camera_entity = camera_entity
|
|
if name:
|
|
self._name = name
|
|
else:
|
|
self._name = "OpenCV {0}".format(split_entity_id(camera_entity)[1])
|
|
self._classifiers = classifiers
|
|
self._matches = {}
|
|
self._total_matches = 0
|
|
self._last_image = None
|
|
|
|
@property
|
|
def camera_entity(self):
|
|
"""Return camera entity id from process pictures."""
|
|
return self._camera_entity
|
|
|
|
@property
|
|
def name(self):
|
|
"""Return the name of the image processor."""
|
|
return self._name
|
|
|
|
@property
|
|
def state(self):
|
|
"""Return the state of the entity."""
|
|
return self._total_matches
|
|
|
|
@property
|
|
def state_attributes(self):
|
|
"""Return device specific state attributes."""
|
|
return {
|
|
ATTR_MATCHES: self._matches,
|
|
ATTR_TOTAL_MATCHES: self._total_matches
|
|
}
|
|
|
|
def process_image(self, image):
|
|
"""Process the image."""
|
|
import cv2 # pylint: disable=import-error
|
|
import numpy
|
|
|
|
cv_image = cv2.imdecode(
|
|
numpy.asarray(bytearray(image)), cv2.IMREAD_UNCHANGED)
|
|
|
|
for name, classifier in self._classifiers.items():
|
|
scale = DEFAULT_SCALE
|
|
neighbors = DEFAULT_NEIGHBORS
|
|
min_size = DEFAULT_MIN_SIZE
|
|
if isinstance(classifier, dict):
|
|
path = classifier[CONF_FILE]
|
|
scale = classifier.get(CONF_SCALE, scale)
|
|
neighbors = classifier.get(CONF_NEIGHBORS, neighbors)
|
|
min_size = classifier.get(CONF_MIN_SIZE, min_size)
|
|
else:
|
|
path = classifier
|
|
|
|
cascade = cv2.CascadeClassifier(path)
|
|
|
|
detections = cascade.detectMultiScale(
|
|
cv_image,
|
|
scaleFactor=scale,
|
|
minNeighbors=neighbors,
|
|
minSize=min_size)
|
|
matches = {}
|
|
total_matches = 0
|
|
regions = []
|
|
# pylint: disable=invalid-name
|
|
for (x, y, w, h) in detections:
|
|
regions.append((int(x), int(y), int(w), int(h)))
|
|
total_matches += 1
|
|
|
|
matches[name] = regions
|
|
|
|
self._matches = matches
|
|
self._total_matches = total_matches
|