core/homeassistant/components/image_processing/opencv.py

184 lines
5.6 KiB
Python

"""Support for OpenCV classification on images."""
from datetime import timedelta
import logging
import requests
import voluptuous as vol
from homeassistant.components.image_processing import (
CONF_ENTITY_ID, CONF_NAME, CONF_SOURCE, PLATFORM_SCHEMA,
ImageProcessingEntity)
from homeassistant.core import split_entity_id
import homeassistant.helpers.config_validation as cv
REQUIREMENTS = ['numpy==1.16.2']
_LOGGER = logging.getLogger(__name__)
ATTR_MATCHES = 'matches'
ATTR_TOTAL_MATCHES = 'total_matches'
CASCADE_URL = \
'https://raw.githubusercontent.com/opencv/opencv/master/data/' + \
'lbpcascades/lbpcascade_frontalface.xml'
CONF_CLASSIFIER = 'classifier'
CONF_FILE = 'file'
CONF_MIN_SIZE = 'min_size'
CONF_NEIGHBORS = 'neighbors'
CONF_SCALE = 'scale'
DEFAULT_CLASSIFIER_PATH = 'lbp_frontalface.xml'
DEFAULT_MIN_SIZE = (30, 30)
DEFAULT_NEIGHBORS = 4
DEFAULT_SCALE = 1.1
DEFAULT_TIMEOUT = 10
SCAN_INTERVAL = timedelta(seconds=2)
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
vol.Optional(CONF_CLASSIFIER): {
cv.string: vol.Any(
cv.isfile,
vol.Schema({
vol.Required(CONF_FILE): cv.isfile,
vol.Optional(CONF_SCALE, DEFAULT_SCALE): float,
vol.Optional(CONF_NEIGHBORS, DEFAULT_NEIGHBORS):
cv.positive_int,
vol.Optional(CONF_MIN_SIZE, DEFAULT_MIN_SIZE):
vol.Schema((int, int))
})
)
}
})
def _create_processor_from_config(hass, camera_entity, config):
"""Create an OpenCV processor from configuration."""
classifier_config = config.get(CONF_CLASSIFIER)
name = '{} {}'.format(
config[CONF_NAME], split_entity_id(camera_entity)[1].replace('_', ' '))
processor = OpenCVImageProcessor(
hass, camera_entity, name, classifier_config)
return processor
def _get_default_classifier(dest_path):
"""Download the default OpenCV classifier."""
_LOGGER.info("Downloading default classifier")
req = requests.get(CASCADE_URL, stream=True)
with open(dest_path, 'wb') as fil:
for chunk in req.iter_content(chunk_size=1024):
if chunk: # filter out keep-alive new chunks
fil.write(chunk)
def setup_platform(hass, config, add_entities, discovery_info=None):
"""Set up the OpenCV image processing platform."""
try:
# Verify that the OpenCV python package is pre-installed
# pylint: disable=unused-import,unused-variable
import cv2 # noqa
except ImportError:
_LOGGER.error(
"No OpenCV library found! Install or compile for your system "
"following instructions here: http://opencv.org/releases.html")
return
entities = []
if CONF_CLASSIFIER not in config:
dest_path = hass.config.path(DEFAULT_CLASSIFIER_PATH)
_get_default_classifier(dest_path)
config[CONF_CLASSIFIER] = {
'Face': dest_path
}
for camera in config[CONF_SOURCE]:
entities.append(OpenCVImageProcessor(
hass, camera[CONF_ENTITY_ID], camera.get(CONF_NAME),
config[CONF_CLASSIFIER]))
add_entities(entities)
class OpenCVImageProcessor(ImageProcessingEntity):
"""Representation of an OpenCV image processor."""
def __init__(self, hass, camera_entity, name, classifiers):
"""Initialize the OpenCV entity."""
self.hass = hass
self._camera_entity = camera_entity
if name:
self._name = name
else:
self._name = "OpenCV {0}".format(split_entity_id(camera_entity)[1])
self._classifiers = classifiers
self._matches = {}
self._total_matches = 0
self._last_image = None
@property
def camera_entity(self):
"""Return camera entity id from process pictures."""
return self._camera_entity
@property
def name(self):
"""Return the name of the image processor."""
return self._name
@property
def state(self):
"""Return the state of the entity."""
return self._total_matches
@property
def state_attributes(self):
"""Return device specific state attributes."""
return {
ATTR_MATCHES: self._matches,
ATTR_TOTAL_MATCHES: self._total_matches
}
def process_image(self, image):
"""Process the image."""
import cv2 # pylint: disable=import-error
import numpy
cv_image = cv2.imdecode(
numpy.asarray(bytearray(image)), cv2.IMREAD_UNCHANGED)
for name, classifier in self._classifiers.items():
scale = DEFAULT_SCALE
neighbors = DEFAULT_NEIGHBORS
min_size = DEFAULT_MIN_SIZE
if isinstance(classifier, dict):
path = classifier[CONF_FILE]
scale = classifier.get(CONF_SCALE, scale)
neighbors = classifier.get(CONF_NEIGHBORS, neighbors)
min_size = classifier.get(CONF_MIN_SIZE, min_size)
else:
path = classifier
cascade = cv2.CascadeClassifier(path)
detections = cascade.detectMultiScale(
cv_image,
scaleFactor=scale,
minNeighbors=neighbors,
minSize=min_size)
matches = {}
total_matches = 0
regions = []
# pylint: disable=invalid-name
for (x, y, w, h) in detections:
regions.append((int(x), int(y), int(w), int(h)))
total_matches += 1
matches[name] = regions
self._matches = matches
self._total_matches = total_matches