283 lines
9.7 KiB
Python
283 lines
9.7 KiB
Python
"""Statistics helper for sensor."""
|
|
from __future__ import annotations
|
|
|
|
import datetime
|
|
import itertools
|
|
import logging
|
|
from typing import Callable
|
|
|
|
from homeassistant.components.recorder import history, statistics
|
|
from homeassistant.components.sensor import (
|
|
ATTR_STATE_CLASS,
|
|
DEVICE_CLASS_BATTERY,
|
|
DEVICE_CLASS_ENERGY,
|
|
DEVICE_CLASS_HUMIDITY,
|
|
DEVICE_CLASS_MONETARY,
|
|
DEVICE_CLASS_PRESSURE,
|
|
DEVICE_CLASS_TEMPERATURE,
|
|
STATE_CLASS_MEASUREMENT,
|
|
)
|
|
from homeassistant.const import (
|
|
ATTR_DEVICE_CLASS,
|
|
ATTR_UNIT_OF_MEASUREMENT,
|
|
DEVICE_CLASS_POWER,
|
|
ENERGY_KILO_WATT_HOUR,
|
|
ENERGY_WATT_HOUR,
|
|
POWER_KILO_WATT,
|
|
POWER_WATT,
|
|
PRESSURE_BAR,
|
|
PRESSURE_HPA,
|
|
PRESSURE_INHG,
|
|
PRESSURE_MBAR,
|
|
PRESSURE_PA,
|
|
PRESSURE_PSI,
|
|
TEMP_CELSIUS,
|
|
TEMP_FAHRENHEIT,
|
|
TEMP_KELVIN,
|
|
)
|
|
from homeassistant.core import HomeAssistant, State
|
|
import homeassistant.util.dt as dt_util
|
|
import homeassistant.util.pressure as pressure_util
|
|
import homeassistant.util.temperature as temperature_util
|
|
|
|
from . import DOMAIN
|
|
|
|
_LOGGER = logging.getLogger(__name__)
|
|
|
|
DEVICE_CLASS_STATISTICS = {
|
|
DEVICE_CLASS_BATTERY: {"mean", "min", "max"},
|
|
DEVICE_CLASS_ENERGY: {"sum"},
|
|
DEVICE_CLASS_HUMIDITY: {"mean", "min", "max"},
|
|
DEVICE_CLASS_MONETARY: {"sum"},
|
|
DEVICE_CLASS_POWER: {"mean", "min", "max"},
|
|
DEVICE_CLASS_PRESSURE: {"mean", "min", "max"},
|
|
DEVICE_CLASS_TEMPERATURE: {"mean", "min", "max"},
|
|
}
|
|
|
|
# Normalized units which will be stored in the statistics table
|
|
DEVICE_CLASS_UNITS = {
|
|
DEVICE_CLASS_ENERGY: ENERGY_KILO_WATT_HOUR,
|
|
DEVICE_CLASS_POWER: POWER_WATT,
|
|
DEVICE_CLASS_PRESSURE: PRESSURE_PA,
|
|
DEVICE_CLASS_TEMPERATURE: TEMP_CELSIUS,
|
|
}
|
|
|
|
UNIT_CONVERSIONS: dict[str, dict[str, Callable]] = {
|
|
# Convert energy to kWh
|
|
DEVICE_CLASS_ENERGY: {
|
|
ENERGY_KILO_WATT_HOUR: lambda x: x,
|
|
ENERGY_WATT_HOUR: lambda x: x / 1000,
|
|
},
|
|
# Convert power W
|
|
DEVICE_CLASS_POWER: {
|
|
POWER_WATT: lambda x: x,
|
|
POWER_KILO_WATT: lambda x: x * 1000,
|
|
},
|
|
# Convert pressure to Pa
|
|
# Note: pressure_util.convert is bypassed to avoid redundant error checking
|
|
DEVICE_CLASS_PRESSURE: {
|
|
PRESSURE_BAR: lambda x: x / pressure_util.UNIT_CONVERSION[PRESSURE_BAR],
|
|
PRESSURE_HPA: lambda x: x / pressure_util.UNIT_CONVERSION[PRESSURE_HPA],
|
|
PRESSURE_INHG: lambda x: x / pressure_util.UNIT_CONVERSION[PRESSURE_INHG],
|
|
PRESSURE_MBAR: lambda x: x / pressure_util.UNIT_CONVERSION[PRESSURE_MBAR],
|
|
PRESSURE_PA: lambda x: x / pressure_util.UNIT_CONVERSION[PRESSURE_PA],
|
|
PRESSURE_PSI: lambda x: x / pressure_util.UNIT_CONVERSION[PRESSURE_PSI],
|
|
},
|
|
# Convert temperature to °C
|
|
# Note: temperature_util.convert is bypassed to avoid redundant error checking
|
|
DEVICE_CLASS_TEMPERATURE: {
|
|
TEMP_CELSIUS: lambda x: x,
|
|
TEMP_FAHRENHEIT: temperature_util.fahrenheit_to_celsius,
|
|
TEMP_KELVIN: temperature_util.kelvin_to_celsius,
|
|
},
|
|
}
|
|
|
|
# Keep track of entities for which a warning about unsupported unit has been logged
|
|
WARN_UNSUPPORTED_UNIT = set()
|
|
|
|
|
|
def _get_entities(hass: HomeAssistant) -> list[tuple[str, str]]:
|
|
"""Get (entity_id, device_class) of all sensors for which to compile statistics."""
|
|
all_sensors = hass.states.all(DOMAIN)
|
|
entity_ids = []
|
|
|
|
for state in all_sensors:
|
|
device_class = state.attributes.get(ATTR_DEVICE_CLASS)
|
|
state_class = state.attributes.get(ATTR_STATE_CLASS)
|
|
if not state_class or state_class != STATE_CLASS_MEASUREMENT:
|
|
continue
|
|
if not device_class or device_class not in DEVICE_CLASS_STATISTICS:
|
|
continue
|
|
entity_ids.append((state.entity_id, device_class))
|
|
return entity_ids
|
|
|
|
|
|
# Faster than try/except
|
|
# From https://stackoverflow.com/a/23639915
|
|
def _is_number(s: str) -> bool: # pylint: disable=invalid-name
|
|
"""Return True if string is a number."""
|
|
return s.replace(".", "", 1).isdigit()
|
|
|
|
|
|
def _time_weighted_average(
|
|
fstates: list[tuple[float, State]], start: datetime.datetime, end: datetime.datetime
|
|
) -> float:
|
|
"""Calculate a time weighted average.
|
|
|
|
The average is calculated by, weighting the states by duration in seconds between
|
|
state changes.
|
|
Note: there's no interpolation of values between state changes.
|
|
"""
|
|
old_fstate: float | None = None
|
|
old_start_time: datetime.datetime | None = None
|
|
accumulated = 0.0
|
|
|
|
for fstate, state in fstates:
|
|
# The recorder will give us the last known state, which may be well
|
|
# before the requested start time for the statistics
|
|
start_time = start if state.last_updated < start else state.last_updated
|
|
if old_start_time is None:
|
|
# Adjust start time, if there was no last known state
|
|
start = start_time
|
|
else:
|
|
duration = start_time - old_start_time
|
|
# Accumulate the value, weighted by duration until next state change
|
|
assert old_fstate is not None
|
|
accumulated += old_fstate * duration.total_seconds()
|
|
|
|
old_fstate = fstate
|
|
old_start_time = start_time
|
|
|
|
if old_fstate is not None:
|
|
# Accumulate the value, weighted by duration until end of the period
|
|
assert old_start_time is not None
|
|
duration = end - old_start_time
|
|
accumulated += old_fstate * duration.total_seconds()
|
|
|
|
return accumulated / (end - start).total_seconds()
|
|
|
|
|
|
def _normalize_states(
|
|
entity_history: list[State], device_class: str, entity_id: str
|
|
) -> tuple[str | None, list[tuple[float, State]]]:
|
|
"""Normalize units."""
|
|
unit = None
|
|
|
|
if device_class not in UNIT_CONVERSIONS:
|
|
# We're not normalizing this device class, return the state as they are
|
|
fstates = [
|
|
(float(el.state), el) for el in entity_history if _is_number(el.state)
|
|
]
|
|
if fstates:
|
|
unit = fstates[0][1].attributes.get(ATTR_UNIT_OF_MEASUREMENT)
|
|
return unit, fstates
|
|
|
|
fstates = []
|
|
|
|
for state in entity_history:
|
|
# Exclude non numerical states from statistics
|
|
if not _is_number(state.state):
|
|
continue
|
|
|
|
fstate = float(state.state)
|
|
unit = state.attributes.get(ATTR_UNIT_OF_MEASUREMENT)
|
|
# Exclude unsupported units from statistics
|
|
if unit not in UNIT_CONVERSIONS[device_class]:
|
|
if entity_id not in WARN_UNSUPPORTED_UNIT:
|
|
WARN_UNSUPPORTED_UNIT.add(entity_id)
|
|
_LOGGER.warning("%s has unknown unit %s", entity_id, unit)
|
|
continue
|
|
|
|
fstates.append((UNIT_CONVERSIONS[device_class][unit](fstate), state))
|
|
|
|
return DEVICE_CLASS_UNITS[device_class], fstates
|
|
|
|
|
|
def compile_statistics(
|
|
hass: HomeAssistant, start: datetime.datetime, end: datetime.datetime
|
|
) -> dict:
|
|
"""Compile statistics for all entities during start-end.
|
|
|
|
Note: This will query the database and must not be run in the event loop
|
|
"""
|
|
result: dict = {}
|
|
|
|
entities = _get_entities(hass)
|
|
|
|
# Get history between start and end
|
|
history_list = history.get_significant_states( # type: ignore
|
|
hass, start - datetime.timedelta.resolution, end, [i[0] for i in entities]
|
|
)
|
|
|
|
for entity_id, device_class in entities:
|
|
wanted_statistics = DEVICE_CLASS_STATISTICS[device_class]
|
|
|
|
if entity_id not in history_list:
|
|
continue
|
|
|
|
entity_history = history_list[entity_id]
|
|
unit, fstates = _normalize_states(entity_history, device_class, entity_id)
|
|
|
|
if not fstates:
|
|
continue
|
|
|
|
result[entity_id] = {}
|
|
|
|
# Set meta data
|
|
result[entity_id]["meta"] = {
|
|
"unit_of_measurement": unit,
|
|
"has_mean": "mean" in wanted_statistics,
|
|
"has_sum": "sum" in wanted_statistics,
|
|
}
|
|
|
|
# Make calculations
|
|
stat: dict = {}
|
|
if "max" in wanted_statistics:
|
|
stat["max"] = max(*itertools.islice(zip(*fstates), 1))
|
|
if "min" in wanted_statistics:
|
|
stat["min"] = min(*itertools.islice(zip(*fstates), 1))
|
|
|
|
if "mean" in wanted_statistics:
|
|
stat["mean"] = _time_weighted_average(fstates, start, end)
|
|
|
|
if "sum" in wanted_statistics:
|
|
last_reset = old_last_reset = None
|
|
new_state = old_state = None
|
|
_sum = 0
|
|
last_stats = statistics.get_last_statistics(hass, 1, entity_id) # type: ignore
|
|
if entity_id in last_stats:
|
|
# We have compiled history for this sensor before, use that as a starting point
|
|
last_reset = old_last_reset = last_stats[entity_id][0]["last_reset"]
|
|
new_state = old_state = last_stats[entity_id][0]["state"]
|
|
_sum = last_stats[entity_id][0]["sum"]
|
|
|
|
for fstate, state in fstates:
|
|
|
|
if "last_reset" not in state.attributes:
|
|
continue
|
|
if (last_reset := state.attributes["last_reset"]) != old_last_reset:
|
|
# The sensor has been reset, update the sum
|
|
if old_state is not None:
|
|
_sum += new_state - old_state
|
|
# ..and update the starting point
|
|
new_state = fstate
|
|
old_last_reset = last_reset
|
|
old_state = new_state
|
|
else:
|
|
new_state = fstate
|
|
|
|
if last_reset is None or new_state is None or old_state is None:
|
|
# No valid updates
|
|
result.pop(entity_id)
|
|
continue
|
|
|
|
# Update the sum with the last state
|
|
_sum += new_state - old_state
|
|
stat["last_reset"] = dt_util.parse_datetime(last_reset)
|
|
stat["sum"] = _sum
|
|
stat["state"] = new_state
|
|
|
|
result[entity_id]["stat"] = stat
|
|
|
|
return result
|