751 lines
26 KiB
Python
751 lines
26 KiB
Python
"""Support for statistics for sensor values."""
|
|
from __future__ import annotations
|
|
|
|
from collections import deque
|
|
from collections.abc import Callable
|
|
import contextlib
|
|
from datetime import datetime, timedelta
|
|
import logging
|
|
import statistics
|
|
from typing import Any, Literal, cast
|
|
|
|
import voluptuous as vol
|
|
|
|
from homeassistant.components.binary_sensor import DOMAIN as BINARY_SENSOR_DOMAIN
|
|
from homeassistant.components.recorder import get_instance, history
|
|
from homeassistant.components.sensor import (
|
|
PLATFORM_SCHEMA,
|
|
SensorDeviceClass,
|
|
SensorEntity,
|
|
SensorStateClass,
|
|
)
|
|
from homeassistant.const import (
|
|
ATTR_DEVICE_CLASS,
|
|
ATTR_UNIT_OF_MEASUREMENT,
|
|
CONF_ENTITY_ID,
|
|
CONF_NAME,
|
|
CONF_UNIQUE_ID,
|
|
STATE_UNAVAILABLE,
|
|
STATE_UNKNOWN,
|
|
)
|
|
from homeassistant.core import (
|
|
CALLBACK_TYPE,
|
|
Event,
|
|
HomeAssistant,
|
|
State,
|
|
callback,
|
|
split_entity_id,
|
|
)
|
|
from homeassistant.helpers import config_validation as cv
|
|
from homeassistant.helpers.entity_platform import AddEntitiesCallback
|
|
from homeassistant.helpers.event import (
|
|
async_track_point_in_utc_time,
|
|
async_track_state_change_event,
|
|
)
|
|
from homeassistant.helpers.reload import async_setup_reload_service
|
|
from homeassistant.helpers.start import async_at_start
|
|
from homeassistant.helpers.typing import ConfigType, DiscoveryInfoType, StateType
|
|
from homeassistant.util import dt as dt_util
|
|
|
|
from . import DOMAIN, PLATFORMS
|
|
|
|
_LOGGER = logging.getLogger(__name__)
|
|
|
|
# Stats for attributes only
|
|
STAT_AGE_COVERAGE_RATIO = "age_coverage_ratio"
|
|
STAT_BUFFER_USAGE_RATIO = "buffer_usage_ratio"
|
|
STAT_SOURCE_VALUE_VALID = "source_value_valid"
|
|
|
|
# All sensor statistics
|
|
STAT_AVERAGE_LINEAR = "average_linear"
|
|
STAT_AVERAGE_STEP = "average_step"
|
|
STAT_AVERAGE_TIMELESS = "average_timeless"
|
|
STAT_CHANGE = "change"
|
|
STAT_CHANGE_SAMPLE = "change_sample"
|
|
STAT_CHANGE_SECOND = "change_second"
|
|
STAT_COUNT = "count"
|
|
STAT_COUNT_BINARY_ON = "count_on"
|
|
STAT_COUNT_BINARY_OFF = "count_off"
|
|
STAT_DATETIME_NEWEST = "datetime_newest"
|
|
STAT_DATETIME_OLDEST = "datetime_oldest"
|
|
STAT_DATETIME_VALUE_MAX = "datetime_value_max"
|
|
STAT_DATETIME_VALUE_MIN = "datetime_value_min"
|
|
STAT_DISTANCE_95P = "distance_95_percent_of_values"
|
|
STAT_DISTANCE_99P = "distance_99_percent_of_values"
|
|
STAT_DISTANCE_ABSOLUTE = "distance_absolute"
|
|
STAT_MEAN = "mean"
|
|
STAT_MEDIAN = "median"
|
|
STAT_NOISINESS = "noisiness"
|
|
STAT_QUANTILES = "quantiles"
|
|
STAT_STANDARD_DEVIATION = "standard_deviation"
|
|
STAT_TOTAL = "total"
|
|
STAT_VALUE_MAX = "value_max"
|
|
STAT_VALUE_MIN = "value_min"
|
|
STAT_VARIANCE = "variance"
|
|
|
|
DEPRECATION_WARNING_CHARACTERISTIC = (
|
|
"The configuration parameter 'state_characteristic' will become "
|
|
"mandatory in a future release of the statistics integration. "
|
|
"Please add 'state_characteristic: %s' to the configuration of "
|
|
"sensor '%s' to keep the current behavior. Read the documentation "
|
|
"for further details: "
|
|
"https://www.home-assistant.io/integrations/statistics/"
|
|
)
|
|
|
|
# Statistics supported by a sensor source (numeric)
|
|
STATS_NUMERIC_SUPPORT = {
|
|
STAT_AVERAGE_LINEAR,
|
|
STAT_AVERAGE_STEP,
|
|
STAT_AVERAGE_TIMELESS,
|
|
STAT_CHANGE_SAMPLE,
|
|
STAT_CHANGE_SECOND,
|
|
STAT_CHANGE,
|
|
STAT_COUNT,
|
|
STAT_DATETIME_NEWEST,
|
|
STAT_DATETIME_OLDEST,
|
|
STAT_DATETIME_VALUE_MAX,
|
|
STAT_DATETIME_VALUE_MIN,
|
|
STAT_DISTANCE_95P,
|
|
STAT_DISTANCE_99P,
|
|
STAT_DISTANCE_ABSOLUTE,
|
|
STAT_MEAN,
|
|
STAT_MEDIAN,
|
|
STAT_NOISINESS,
|
|
STAT_QUANTILES,
|
|
STAT_STANDARD_DEVIATION,
|
|
STAT_TOTAL,
|
|
STAT_VALUE_MAX,
|
|
STAT_VALUE_MIN,
|
|
STAT_VARIANCE,
|
|
}
|
|
|
|
# Statistics supported by a binary_sensor source
|
|
STATS_BINARY_SUPPORT = {
|
|
STAT_AVERAGE_STEP,
|
|
STAT_AVERAGE_TIMELESS,
|
|
STAT_COUNT,
|
|
STAT_COUNT_BINARY_ON,
|
|
STAT_COUNT_BINARY_OFF,
|
|
STAT_DATETIME_NEWEST,
|
|
STAT_DATETIME_OLDEST,
|
|
STAT_MEAN,
|
|
}
|
|
|
|
STATS_NOT_A_NUMBER = {
|
|
STAT_DATETIME_NEWEST,
|
|
STAT_DATETIME_OLDEST,
|
|
STAT_DATETIME_VALUE_MAX,
|
|
STAT_DATETIME_VALUE_MIN,
|
|
STAT_QUANTILES,
|
|
}
|
|
|
|
STATS_DATETIME = {
|
|
STAT_DATETIME_NEWEST,
|
|
STAT_DATETIME_OLDEST,
|
|
STAT_DATETIME_VALUE_MAX,
|
|
STAT_DATETIME_VALUE_MIN,
|
|
}
|
|
|
|
# Statistics which retain the unit of the source entity
|
|
STAT_NUMERIC_RETAIN_UNIT = {
|
|
STAT_AVERAGE_LINEAR,
|
|
STAT_AVERAGE_STEP,
|
|
STAT_AVERAGE_TIMELESS,
|
|
STAT_CHANGE,
|
|
STAT_DISTANCE_95P,
|
|
STAT_DISTANCE_99P,
|
|
STAT_DISTANCE_ABSOLUTE,
|
|
STAT_MEAN,
|
|
STAT_MEDIAN,
|
|
STAT_NOISINESS,
|
|
STAT_STANDARD_DEVIATION,
|
|
STAT_TOTAL,
|
|
STAT_VALUE_MAX,
|
|
STAT_VALUE_MIN,
|
|
}
|
|
|
|
# Statistics which produce percentage ratio from binary_sensor source entity
|
|
STAT_BINARY_PERCENTAGE = {
|
|
STAT_AVERAGE_STEP,
|
|
STAT_AVERAGE_TIMELESS,
|
|
STAT_MEAN,
|
|
}
|
|
|
|
CONF_STATE_CHARACTERISTIC = "state_characteristic"
|
|
CONF_SAMPLES_MAX_BUFFER_SIZE = "sampling_size"
|
|
CONF_MAX_AGE = "max_age"
|
|
CONF_PRECISION = "precision"
|
|
CONF_QUANTILE_INTERVALS = "quantile_intervals"
|
|
CONF_QUANTILE_METHOD = "quantile_method"
|
|
|
|
DEFAULT_NAME = "Stats"
|
|
DEFAULT_BUFFER_SIZE = 20
|
|
DEFAULT_PRECISION = 2
|
|
DEFAULT_QUANTILE_INTERVALS = 4
|
|
DEFAULT_QUANTILE_METHOD = "exclusive"
|
|
ICON = "mdi:calculator"
|
|
|
|
|
|
def valid_state_characteristic_configuration(config: dict[str, Any]) -> dict[str, Any]:
|
|
"""Validate that the characteristic selected is valid for the source sensor type, throw if it isn't."""
|
|
is_binary = split_entity_id(config[CONF_ENTITY_ID])[0] == BINARY_SENSOR_DOMAIN
|
|
|
|
if config.get(CONF_STATE_CHARACTERISTIC) is None:
|
|
config[CONF_STATE_CHARACTERISTIC] = STAT_COUNT if is_binary else STAT_MEAN
|
|
_LOGGER.warning(
|
|
DEPRECATION_WARNING_CHARACTERISTIC,
|
|
config[CONF_STATE_CHARACTERISTIC],
|
|
config[CONF_NAME],
|
|
)
|
|
|
|
characteristic = cast(str, config[CONF_STATE_CHARACTERISTIC])
|
|
if (is_binary and characteristic not in STATS_BINARY_SUPPORT) or (
|
|
not is_binary and characteristic not in STATS_NUMERIC_SUPPORT
|
|
):
|
|
raise vol.ValueInvalid(
|
|
"The configured characteristic '{}' is not supported for the configured source sensor".format(
|
|
characteristic
|
|
)
|
|
)
|
|
return config
|
|
|
|
|
|
_PLATFORM_SCHEMA_BASE = PLATFORM_SCHEMA.extend(
|
|
{
|
|
vol.Required(CONF_ENTITY_ID): cv.entity_id,
|
|
vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string,
|
|
vol.Optional(CONF_UNIQUE_ID): cv.string,
|
|
vol.Optional(CONF_STATE_CHARACTERISTIC): cv.string,
|
|
vol.Optional(
|
|
CONF_SAMPLES_MAX_BUFFER_SIZE, default=DEFAULT_BUFFER_SIZE
|
|
): vol.All(vol.Coerce(int), vol.Range(min=1)),
|
|
vol.Optional(CONF_MAX_AGE): cv.time_period,
|
|
vol.Optional(CONF_PRECISION, default=DEFAULT_PRECISION): vol.Coerce(int),
|
|
vol.Optional(
|
|
CONF_QUANTILE_INTERVALS, default=DEFAULT_QUANTILE_INTERVALS
|
|
): vol.All(vol.Coerce(int), vol.Range(min=2)),
|
|
vol.Optional(CONF_QUANTILE_METHOD, default=DEFAULT_QUANTILE_METHOD): vol.In(
|
|
["exclusive", "inclusive"]
|
|
),
|
|
}
|
|
)
|
|
PLATFORM_SCHEMA = vol.All(
|
|
_PLATFORM_SCHEMA_BASE,
|
|
valid_state_characteristic_configuration,
|
|
)
|
|
|
|
|
|
async def async_setup_platform(
|
|
hass: HomeAssistant,
|
|
config: ConfigType,
|
|
async_add_entities: AddEntitiesCallback,
|
|
discovery_info: DiscoveryInfoType | None = None,
|
|
) -> None:
|
|
"""Set up the Statistics sensor."""
|
|
|
|
await async_setup_reload_service(hass, DOMAIN, PLATFORMS)
|
|
|
|
async_add_entities(
|
|
new_entities=[
|
|
StatisticsSensor(
|
|
source_entity_id=config[CONF_ENTITY_ID],
|
|
name=config[CONF_NAME],
|
|
unique_id=config.get(CONF_UNIQUE_ID),
|
|
state_characteristic=config[CONF_STATE_CHARACTERISTIC],
|
|
samples_max_buffer_size=config[CONF_SAMPLES_MAX_BUFFER_SIZE],
|
|
samples_max_age=config.get(CONF_MAX_AGE),
|
|
precision=config[CONF_PRECISION],
|
|
quantile_intervals=config[CONF_QUANTILE_INTERVALS],
|
|
quantile_method=config[CONF_QUANTILE_METHOD],
|
|
)
|
|
],
|
|
update_before_add=True,
|
|
)
|
|
|
|
|
|
class StatisticsSensor(SensorEntity):
|
|
"""Representation of a Statistics sensor."""
|
|
|
|
def __init__(
|
|
self,
|
|
source_entity_id: str,
|
|
name: str,
|
|
unique_id: str | None,
|
|
state_characteristic: str,
|
|
samples_max_buffer_size: int,
|
|
samples_max_age: timedelta | None,
|
|
precision: int,
|
|
quantile_intervals: int,
|
|
quantile_method: Literal["exclusive", "inclusive"],
|
|
) -> None:
|
|
"""Initialize the Statistics sensor."""
|
|
self._attr_icon: str = ICON
|
|
self._attr_name: str = name
|
|
self._attr_should_poll: bool = False
|
|
self._attr_unique_id: str | None = unique_id
|
|
self._source_entity_id: str = source_entity_id
|
|
self.is_binary: bool = (
|
|
split_entity_id(self._source_entity_id)[0] == BINARY_SENSOR_DOMAIN
|
|
)
|
|
self._state_characteristic: str = state_characteristic
|
|
self._samples_max_buffer_size: int = samples_max_buffer_size
|
|
self._samples_max_age: timedelta | None = samples_max_age
|
|
self._precision: int = precision
|
|
self._quantile_intervals: int = quantile_intervals
|
|
self._quantile_method: Literal["exclusive", "inclusive"] = quantile_method
|
|
self._value: StateType | datetime = None
|
|
self._unit_of_measurement: str | None = None
|
|
self._available: bool = False
|
|
self.states: deque[float | bool] = deque(maxlen=self._samples_max_buffer_size)
|
|
self.ages: deque[datetime] = deque(maxlen=self._samples_max_buffer_size)
|
|
self.attributes: dict[str, StateType] = {
|
|
STAT_AGE_COVERAGE_RATIO: None,
|
|
STAT_BUFFER_USAGE_RATIO: None,
|
|
STAT_SOURCE_VALUE_VALID: None,
|
|
}
|
|
|
|
self._state_characteristic_fn: Callable[[], StateType | datetime]
|
|
if self.is_binary:
|
|
self._state_characteristic_fn = getattr(
|
|
self, f"_stat_binary_{self._state_characteristic}"
|
|
)
|
|
else:
|
|
self._state_characteristic_fn = getattr(
|
|
self, f"_stat_{self._state_characteristic}"
|
|
)
|
|
|
|
self._update_listener: CALLBACK_TYPE | None = None
|
|
|
|
async def async_added_to_hass(self) -> None:
|
|
"""Register callbacks."""
|
|
|
|
@callback
|
|
def async_stats_sensor_state_listener(event: Event) -> None:
|
|
"""Handle the sensor state changes."""
|
|
if (new_state := event.data.get("new_state")) is None:
|
|
return
|
|
self._add_state_to_queue(new_state)
|
|
self.async_schedule_update_ha_state(True)
|
|
|
|
async def async_stats_sensor_startup(_: HomeAssistant) -> None:
|
|
"""Add listener and get recorded state."""
|
|
_LOGGER.debug("Startup for %s", self.entity_id)
|
|
|
|
self.async_on_remove(
|
|
async_track_state_change_event(
|
|
self.hass,
|
|
[self._source_entity_id],
|
|
async_stats_sensor_state_listener,
|
|
)
|
|
)
|
|
|
|
if "recorder" in self.hass.config.components:
|
|
self.hass.async_create_task(self._initialize_from_database())
|
|
|
|
self.async_on_remove(async_at_start(self.hass, async_stats_sensor_startup))
|
|
|
|
def _add_state_to_queue(self, new_state: State) -> None:
|
|
"""Add the state to the queue."""
|
|
self._available = new_state.state != STATE_UNAVAILABLE
|
|
if new_state.state == STATE_UNAVAILABLE:
|
|
self.attributes[STAT_SOURCE_VALUE_VALID] = None
|
|
return
|
|
if new_state.state in (STATE_UNKNOWN, None, ""):
|
|
self.attributes[STAT_SOURCE_VALUE_VALID] = False
|
|
return
|
|
|
|
try:
|
|
if self.is_binary:
|
|
assert new_state.state in ("on", "off")
|
|
self.states.append(new_state.state == "on")
|
|
else:
|
|
self.states.append(float(new_state.state))
|
|
self.ages.append(new_state.last_updated)
|
|
self.attributes[STAT_SOURCE_VALUE_VALID] = True
|
|
except ValueError:
|
|
self.attributes[STAT_SOURCE_VALUE_VALID] = False
|
|
_LOGGER.error(
|
|
"%s: parsing error. Expected number or binary state, but received '%s'",
|
|
self.entity_id,
|
|
new_state.state,
|
|
)
|
|
return
|
|
|
|
self._unit_of_measurement = self._derive_unit_of_measurement(new_state)
|
|
|
|
def _derive_unit_of_measurement(self, new_state: State) -> str | None:
|
|
base_unit: str | None = new_state.attributes.get(ATTR_UNIT_OF_MEASUREMENT)
|
|
unit: str | None
|
|
if self.is_binary and self._state_characteristic in STAT_BINARY_PERCENTAGE:
|
|
unit = "%"
|
|
elif not base_unit:
|
|
unit = None
|
|
elif self._state_characteristic in STAT_NUMERIC_RETAIN_UNIT:
|
|
unit = base_unit
|
|
elif self._state_characteristic in STATS_NOT_A_NUMBER:
|
|
unit = None
|
|
elif self._state_characteristic in (
|
|
STAT_COUNT,
|
|
STAT_COUNT_BINARY_ON,
|
|
STAT_COUNT_BINARY_OFF,
|
|
):
|
|
unit = None
|
|
elif self._state_characteristic == STAT_VARIANCE:
|
|
unit = base_unit + "²"
|
|
elif self._state_characteristic == STAT_CHANGE_SAMPLE:
|
|
unit = base_unit + "/sample"
|
|
elif self._state_characteristic == STAT_CHANGE_SECOND:
|
|
unit = base_unit + "/s"
|
|
return unit
|
|
|
|
@property
|
|
def device_class(self) -> SensorDeviceClass | None:
|
|
"""Return the class of this device."""
|
|
if self._state_characteristic in STAT_NUMERIC_RETAIN_UNIT:
|
|
_state = self.hass.states.get(self._source_entity_id)
|
|
return None if _state is None else _state.attributes.get(ATTR_DEVICE_CLASS)
|
|
if self._state_characteristic in STATS_DATETIME:
|
|
return SensorDeviceClass.TIMESTAMP
|
|
return None
|
|
|
|
@property
|
|
def state_class(self) -> Literal[SensorStateClass.MEASUREMENT] | None:
|
|
"""Return the state class of this entity."""
|
|
if self._state_characteristic in STATS_NOT_A_NUMBER:
|
|
return None
|
|
return SensorStateClass.MEASUREMENT
|
|
|
|
@property
|
|
def native_value(self) -> StateType | datetime:
|
|
"""Return the state of the sensor."""
|
|
return self._value
|
|
|
|
@property
|
|
def native_unit_of_measurement(self) -> str | None:
|
|
"""Return the unit the value is expressed in."""
|
|
return self._unit_of_measurement
|
|
|
|
@property
|
|
def available(self) -> bool:
|
|
"""Return the availability of the sensor linked to the source sensor."""
|
|
return self._available
|
|
|
|
@property
|
|
def extra_state_attributes(self) -> dict[str, StateType] | None:
|
|
"""Return the state attributes of the sensor."""
|
|
return {
|
|
key: value for key, value in self.attributes.items() if value is not None
|
|
}
|
|
|
|
def _purge_old_states(self, max_age: timedelta) -> None:
|
|
"""Remove states which are older than a given age."""
|
|
now = dt_util.utcnow()
|
|
|
|
_LOGGER.debug(
|
|
"%s: purging records older then %s(%s)",
|
|
self.entity_id,
|
|
dt_util.as_local(now - max_age),
|
|
self._samples_max_age,
|
|
)
|
|
|
|
while self.ages and (now - self.ages[0]) > max_age:
|
|
_LOGGER.debug(
|
|
"%s: purging record with datetime %s(%s)",
|
|
self.entity_id,
|
|
dt_util.as_local(self.ages[0]),
|
|
(now - self.ages[0]),
|
|
)
|
|
self.ages.popleft()
|
|
self.states.popleft()
|
|
|
|
def _next_to_purge_timestamp(self) -> datetime | None:
|
|
"""Find the timestamp when the next purge would occur."""
|
|
if self.ages and self._samples_max_age:
|
|
# Take the oldest entry from the ages list and add the configured max_age.
|
|
# If executed after purging old states, the result is the next timestamp
|
|
# in the future when the oldest state will expire.
|
|
return self.ages[0] + self._samples_max_age
|
|
return None
|
|
|
|
async def async_update(self) -> None:
|
|
"""Get the latest data and updates the states."""
|
|
_LOGGER.debug("%s: updating statistics", self.entity_id)
|
|
if self._samples_max_age is not None:
|
|
self._purge_old_states(self._samples_max_age)
|
|
|
|
self._update_attributes()
|
|
self._update_value()
|
|
|
|
# If max_age is set, ensure to update again after the defined interval.
|
|
next_to_purge_timestamp = self._next_to_purge_timestamp()
|
|
if next_to_purge_timestamp:
|
|
_LOGGER.debug(
|
|
"%s: scheduling update at %s", self.entity_id, next_to_purge_timestamp
|
|
)
|
|
if self._update_listener:
|
|
self._update_listener()
|
|
self._update_listener = None
|
|
|
|
@callback
|
|
def _scheduled_update(now: datetime) -> None:
|
|
"""Timer callback for sensor update."""
|
|
_LOGGER.debug("%s: executing scheduled update", self.entity_id)
|
|
self.async_schedule_update_ha_state(True)
|
|
self._update_listener = None
|
|
|
|
self._update_listener = async_track_point_in_utc_time(
|
|
self.hass, _scheduled_update, next_to_purge_timestamp
|
|
)
|
|
|
|
def _fetch_states_from_database(self) -> list[State]:
|
|
"""Fetch the states from the database."""
|
|
_LOGGER.debug("%s: initializing values from the database", self.entity_id)
|
|
lower_entity_id = self._source_entity_id.lower()
|
|
if self._samples_max_age is not None:
|
|
start_date = (
|
|
dt_util.utcnow() - self._samples_max_age - timedelta(microseconds=1)
|
|
)
|
|
_LOGGER.debug(
|
|
"%s: retrieve records not older then %s",
|
|
self.entity_id,
|
|
start_date,
|
|
)
|
|
else:
|
|
start_date = datetime.fromtimestamp(0, tz=dt_util.UTC)
|
|
_LOGGER.debug("%s: retrieving all records", self.entity_id)
|
|
return history.state_changes_during_period(
|
|
self.hass,
|
|
start_date,
|
|
entity_id=lower_entity_id,
|
|
descending=True,
|
|
limit=self._samples_max_buffer_size,
|
|
include_start_time_state=False,
|
|
).get(lower_entity_id, [])
|
|
|
|
async def _initialize_from_database(self) -> None:
|
|
"""Initialize the list of states from the database.
|
|
|
|
The query will get the list of states in DESCENDING order so that we
|
|
can limit the result to self._sample_size. Afterwards reverse the
|
|
list so that we get it in the right order again.
|
|
|
|
If MaxAge is provided then query will restrict to entries younger then
|
|
current datetime - MaxAge.
|
|
"""
|
|
if states := await get_instance(self.hass).async_add_executor_job(
|
|
self._fetch_states_from_database
|
|
):
|
|
for state in reversed(states):
|
|
self._add_state_to_queue(state)
|
|
|
|
self.async_schedule_update_ha_state(True)
|
|
|
|
_LOGGER.debug("%s: initializing from database completed", self.entity_id)
|
|
|
|
def _update_attributes(self) -> None:
|
|
"""Calculate and update the various attributes."""
|
|
self.attributes[STAT_BUFFER_USAGE_RATIO] = round(
|
|
len(self.states) / self._samples_max_buffer_size, 2
|
|
)
|
|
|
|
if len(self.states) >= 1 and self._samples_max_age is not None:
|
|
self.attributes[STAT_AGE_COVERAGE_RATIO] = round(
|
|
(self.ages[-1] - self.ages[0]).total_seconds()
|
|
/ self._samples_max_age.total_seconds(),
|
|
2,
|
|
)
|
|
else:
|
|
self.attributes[STAT_AGE_COVERAGE_RATIO] = None
|
|
|
|
def _update_value(self) -> None:
|
|
"""Front to call the right statistical characteristics functions.
|
|
|
|
One of the _stat_*() functions is represented by self._state_characteristic_fn().
|
|
"""
|
|
|
|
value = self._state_characteristic_fn()
|
|
|
|
if self._state_characteristic not in STATS_NOT_A_NUMBER:
|
|
with contextlib.suppress(TypeError):
|
|
value = round(cast(float, value), self._precision)
|
|
if self._precision == 0:
|
|
value = int(value)
|
|
self._value = value
|
|
|
|
# Statistics for numeric sensor
|
|
|
|
def _stat_average_linear(self) -> StateType:
|
|
if len(self.states) >= 2:
|
|
area: float = 0
|
|
for i in range(1, len(self.states)):
|
|
area += (
|
|
0.5
|
|
* (self.states[i] + self.states[i - 1])
|
|
* (self.ages[i] - self.ages[i - 1]).total_seconds()
|
|
)
|
|
age_range_seconds = (self.ages[-1] - self.ages[0]).total_seconds()
|
|
return area / age_range_seconds
|
|
return None
|
|
|
|
def _stat_average_step(self) -> StateType:
|
|
if len(self.states) >= 2:
|
|
area: float = 0
|
|
for i in range(1, len(self.states)):
|
|
area += (
|
|
self.states[i - 1]
|
|
* (self.ages[i] - self.ages[i - 1]).total_seconds()
|
|
)
|
|
age_range_seconds = (self.ages[-1] - self.ages[0]).total_seconds()
|
|
return area / age_range_seconds
|
|
return None
|
|
|
|
def _stat_average_timeless(self) -> StateType:
|
|
return self._stat_mean()
|
|
|
|
def _stat_change(self) -> StateType:
|
|
if len(self.states) > 0:
|
|
return self.states[-1] - self.states[0]
|
|
return None
|
|
|
|
def _stat_change_sample(self) -> StateType:
|
|
if len(self.states) > 1:
|
|
return (self.states[-1] - self.states[0]) / (len(self.states) - 1)
|
|
return None
|
|
|
|
def _stat_change_second(self) -> StateType:
|
|
if len(self.states) > 1:
|
|
age_range_seconds = (self.ages[-1] - self.ages[0]).total_seconds()
|
|
if age_range_seconds > 0:
|
|
return (self.states[-1] - self.states[0]) / age_range_seconds
|
|
return None
|
|
|
|
def _stat_count(self) -> StateType:
|
|
return len(self.states)
|
|
|
|
def _stat_datetime_newest(self) -> datetime | None:
|
|
if len(self.states) > 0:
|
|
return self.ages[-1]
|
|
return None
|
|
|
|
def _stat_datetime_oldest(self) -> datetime | None:
|
|
if len(self.states) > 0:
|
|
return self.ages[0]
|
|
return None
|
|
|
|
def _stat_datetime_value_max(self) -> datetime | None:
|
|
if len(self.states) > 0:
|
|
return self.ages[self.states.index(max(self.states))]
|
|
return None
|
|
|
|
def _stat_datetime_value_min(self) -> datetime | None:
|
|
if len(self.states) > 0:
|
|
return self.ages[self.states.index(min(self.states))]
|
|
return None
|
|
|
|
def _stat_distance_95_percent_of_values(self) -> StateType:
|
|
if len(self.states) >= 2:
|
|
return 2 * 1.96 * cast(float, self._stat_standard_deviation())
|
|
return None
|
|
|
|
def _stat_distance_99_percent_of_values(self) -> StateType:
|
|
if len(self.states) >= 2:
|
|
return 2 * 2.58 * cast(float, self._stat_standard_deviation())
|
|
return None
|
|
|
|
def _stat_distance_absolute(self) -> StateType:
|
|
if len(self.states) > 0:
|
|
return max(self.states) - min(self.states)
|
|
return None
|
|
|
|
def _stat_mean(self) -> StateType:
|
|
if len(self.states) > 0:
|
|
return statistics.mean(self.states)
|
|
return None
|
|
|
|
def _stat_median(self) -> StateType:
|
|
if len(self.states) > 0:
|
|
return statistics.median(self.states)
|
|
return None
|
|
|
|
def _stat_noisiness(self) -> StateType:
|
|
if len(self.states) >= 2:
|
|
diff_sum = sum(
|
|
abs(j - i) for i, j in zip(list(self.states), list(self.states)[1:])
|
|
)
|
|
return diff_sum / (len(self.states) - 1)
|
|
return None
|
|
|
|
def _stat_quantiles(self) -> StateType:
|
|
if len(self.states) > self._quantile_intervals:
|
|
return str(
|
|
[
|
|
round(quantile, self._precision)
|
|
for quantile in statistics.quantiles(
|
|
self.states,
|
|
n=self._quantile_intervals,
|
|
method=self._quantile_method,
|
|
)
|
|
]
|
|
)
|
|
return None
|
|
|
|
def _stat_standard_deviation(self) -> StateType:
|
|
if len(self.states) >= 2:
|
|
return statistics.stdev(self.states)
|
|
return None
|
|
|
|
def _stat_total(self) -> StateType:
|
|
if len(self.states) > 0:
|
|
return sum(self.states)
|
|
return None
|
|
|
|
def _stat_value_max(self) -> StateType:
|
|
if len(self.states) > 0:
|
|
return max(self.states)
|
|
return None
|
|
|
|
def _stat_value_min(self) -> StateType:
|
|
if len(self.states) > 0:
|
|
return min(self.states)
|
|
return None
|
|
|
|
def _stat_variance(self) -> StateType:
|
|
if len(self.states) >= 2:
|
|
return statistics.variance(self.states)
|
|
return None
|
|
|
|
# Statistics for binary sensor
|
|
|
|
def _stat_binary_average_step(self) -> StateType:
|
|
if len(self.states) >= 2:
|
|
on_seconds: float = 0
|
|
for i in range(1, len(self.states)):
|
|
if self.states[i - 1] is True:
|
|
on_seconds += (self.ages[i] - self.ages[i - 1]).total_seconds()
|
|
age_range_seconds = (self.ages[-1] - self.ages[0]).total_seconds()
|
|
return 100 / age_range_seconds * on_seconds
|
|
return None
|
|
|
|
def _stat_binary_average_timeless(self) -> StateType:
|
|
return self._stat_binary_mean()
|
|
|
|
def _stat_binary_count(self) -> StateType:
|
|
return len(self.states)
|
|
|
|
def _stat_binary_count_on(self) -> StateType:
|
|
return self.states.count(True)
|
|
|
|
def _stat_binary_count_off(self) -> StateType:
|
|
return self.states.count(False)
|
|
|
|
def _stat_binary_datetime_newest(self) -> datetime | None:
|
|
return self._stat_datetime_newest()
|
|
|
|
def _stat_binary_datetime_oldest(self) -> datetime | None:
|
|
return self._stat_datetime_oldest()
|
|
|
|
def _stat_binary_mean(self) -> StateType:
|
|
if len(self.states) > 0:
|
|
return 100.0 / len(self.states) * self.states.count(True)
|
|
return None
|