core/homeassistant/components/min_max/sensor.py

360 lines
11 KiB
Python

"""Support for displaying minimal, maximal, mean or median values."""
from __future__ import annotations
from datetime import datetime
import logging
import statistics
from typing import Any
import voluptuous as vol
from homeassistant.components.sensor import (
PLATFORM_SCHEMA,
SensorEntity,
SensorStateClass,
)
from homeassistant.config_entries import ConfigEntry
from homeassistant.const import (
ATTR_UNIT_OF_MEASUREMENT,
CONF_NAME,
CONF_TYPE,
CONF_UNIQUE_ID,
STATE_UNAVAILABLE,
STATE_UNKNOWN,
)
from homeassistant.core import HomeAssistant, callback
from homeassistant.helpers import config_validation as cv, entity_registry as er
from homeassistant.helpers.entity_platform import AddEntitiesCallback
from homeassistant.helpers.event import (
EventStateChangedData,
async_track_state_change_event,
)
from homeassistant.helpers.reload import async_setup_reload_service
from homeassistant.helpers.typing import (
ConfigType,
DiscoveryInfoType,
EventType,
StateType,
)
from . import PLATFORMS
from .const import CONF_ENTITY_IDS, CONF_ROUND_DIGITS, DOMAIN
_LOGGER = logging.getLogger(__name__)
ATTR_MIN_VALUE = "min_value"
ATTR_MIN_ENTITY_ID = "min_entity_id"
ATTR_MAX_VALUE = "max_value"
ATTR_MAX_ENTITY_ID = "max_entity_id"
ATTR_MEAN = "mean"
ATTR_MEDIAN = "median"
ATTR_LAST = "last"
ATTR_LAST_ENTITY_ID = "last_entity_id"
ATTR_RANGE = "range"
ATTR_SUM = "sum"
ICON = "mdi:calculator"
SENSOR_TYPES = {
ATTR_MIN_VALUE: "min",
ATTR_MAX_VALUE: "max",
ATTR_MEAN: "mean",
ATTR_MEDIAN: "median",
ATTR_LAST: "last",
ATTR_RANGE: "range",
ATTR_SUM: "sum",
}
SENSOR_TYPE_TO_ATTR = {v: k for k, v in SENSOR_TYPES.items()}
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend(
{
vol.Optional(CONF_TYPE, default=SENSOR_TYPES[ATTR_MAX_VALUE]): vol.All(
cv.string, vol.In(SENSOR_TYPES.values())
),
vol.Optional(CONF_NAME): cv.string,
vol.Required(CONF_ENTITY_IDS): cv.entity_ids,
vol.Optional(CONF_ROUND_DIGITS, default=2): vol.Coerce(int),
vol.Optional(CONF_UNIQUE_ID): cv.string,
}
)
async def async_setup_entry(
hass: HomeAssistant,
config_entry: ConfigEntry,
async_add_entities: AddEntitiesCallback,
) -> None:
"""Initialize min/max/mean config entry."""
registry = er.async_get(hass)
entity_ids = er.async_validate_entity_ids(
registry, config_entry.options[CONF_ENTITY_IDS]
)
sensor_type = config_entry.options[CONF_TYPE]
round_digits = int(config_entry.options[CONF_ROUND_DIGITS])
async_add_entities(
[
MinMaxSensor(
entity_ids,
config_entry.title,
sensor_type,
round_digits,
config_entry.entry_id,
)
]
)
async def async_setup_platform(
hass: HomeAssistant,
config: ConfigType,
async_add_entities: AddEntitiesCallback,
discovery_info: DiscoveryInfoType | None = None,
) -> None:
"""Set up the min/max/mean sensor."""
entity_ids: list[str] = config[CONF_ENTITY_IDS]
name: str | None = config.get(CONF_NAME)
sensor_type: str = config[CONF_TYPE]
round_digits: int = config[CONF_ROUND_DIGITS]
unique_id = config.get(CONF_UNIQUE_ID)
await async_setup_reload_service(hass, DOMAIN, PLATFORMS)
async_add_entities(
[MinMaxSensor(entity_ids, name, sensor_type, round_digits, unique_id)]
)
def calc_min(sensor_values: list[tuple[str, Any]]) -> tuple[str | None, float | None]:
"""Calculate min value, honoring unknown states."""
val: float | None = None
entity_id: str | None = None
for sensor_id, sensor_value in sensor_values:
if sensor_value not in [STATE_UNKNOWN, STATE_UNAVAILABLE] and (
val is None or val > sensor_value
):
entity_id, val = sensor_id, sensor_value
return entity_id, val
def calc_max(sensor_values: list[tuple[str, Any]]) -> tuple[str | None, float | None]:
"""Calculate max value, honoring unknown states."""
val: float | None = None
entity_id: str | None = None
for sensor_id, sensor_value in sensor_values:
if sensor_value not in [STATE_UNKNOWN, STATE_UNAVAILABLE] and (
val is None or val < sensor_value
):
entity_id, val = sensor_id, sensor_value
return entity_id, val
def calc_mean(sensor_values: list[tuple[str, Any]], round_digits: int) -> float | None:
"""Calculate mean value, honoring unknown states."""
result = [
sensor_value
for _, sensor_value in sensor_values
if sensor_value not in [STATE_UNKNOWN, STATE_UNAVAILABLE]
]
if not result:
return None
value: float = round(statistics.mean(result), round_digits)
return value
def calc_median(
sensor_values: list[tuple[str, Any]], round_digits: int
) -> float | None:
"""Calculate median value, honoring unknown states."""
result = [
sensor_value
for _, sensor_value in sensor_values
if sensor_value not in [STATE_UNKNOWN, STATE_UNAVAILABLE]
]
if not result:
return None
value: float = round(statistics.median(result), round_digits)
return value
def calc_range(sensor_values: list[tuple[str, Any]], round_digits: int) -> float | None:
"""Calculate range value, honoring unknown states."""
result = [
sensor_value
for _, sensor_value in sensor_values
if sensor_value not in [STATE_UNKNOWN, STATE_UNAVAILABLE]
]
if not result:
return None
value: float = round(max(result) - min(result), round_digits)
return value
def calc_sum(sensor_values: list[tuple[str, Any]], round_digits: int) -> float | None:
"""Calculate a sum of values, not honoring unknown states."""
result = 0
for _, sensor_value in sensor_values:
if sensor_value in [STATE_UNKNOWN, STATE_UNAVAILABLE]:
return None
result += sensor_value
value: float = round(result, round_digits)
return value
class MinMaxSensor(SensorEntity):
"""Representation of a min/max sensor."""
_attr_icon = ICON
_attr_should_poll = False
_attr_state_class = SensorStateClass.MEASUREMENT
def __init__(
self,
entity_ids: list[str],
name: str | None,
sensor_type: str,
round_digits: int,
unique_id: str | None,
) -> None:
"""Initialize the min/max sensor."""
self._attr_unique_id = unique_id
self._entity_ids = entity_ids
self._sensor_type = sensor_type
self._round_digits = round_digits
if name:
self._attr_name = name
else:
self._attr_name = f"{sensor_type} sensor".capitalize()
self._sensor_attr = SENSOR_TYPE_TO_ATTR[self._sensor_type]
self._unit_of_measurement = None
self._unit_of_measurement_mismatch = False
self.min_value: float | None = None
self.max_value: float | None = None
self.mean: float | None = None
self.last: float | None = None
self.median: float | None = None
self.range: float | None = None
self.sum: float | None = None
self.min_entity_id: str | None = None
self.max_entity_id: str | None = None
self.last_entity_id: str | None = None
self.count_sensors = len(self._entity_ids)
self.states: dict[str, Any] = {}
async def async_added_to_hass(self) -> None:
"""Handle added to Hass."""
self.async_on_remove(
async_track_state_change_event(
self.hass, self._entity_ids, self._async_min_max_sensor_state_listener
)
)
# Replay current state of source entities
for entity_id in self._entity_ids:
state = self.hass.states.get(entity_id)
state_event: EventType[EventStateChangedData] = EventType(
"", {"entity_id": entity_id, "new_state": state, "old_state": None}
)
self._async_min_max_sensor_state_listener(state_event, update_state=False)
self._calc_values()
@property
def native_value(self) -> StateType | datetime:
"""Return the state of the sensor."""
if self._unit_of_measurement_mismatch:
return None
value: StateType | datetime = getattr(self, self._sensor_attr)
return value
@property
def native_unit_of_measurement(self) -> str | None:
"""Return the unit the value is expressed in."""
if self._unit_of_measurement_mismatch:
return "ERR"
return self._unit_of_measurement
@property
def extra_state_attributes(self) -> dict[str, Any] | None:
"""Return the state attributes of the sensor."""
if self._sensor_type == "min":
return {ATTR_MIN_ENTITY_ID: self.min_entity_id}
if self._sensor_type == "max":
return {ATTR_MAX_ENTITY_ID: self.max_entity_id}
if self._sensor_type == "last":
return {ATTR_LAST_ENTITY_ID: self.last_entity_id}
return None
@callback
def _async_min_max_sensor_state_listener(
self, event: EventType[EventStateChangedData], update_state: bool = True
) -> None:
"""Handle the sensor state changes."""
new_state = event.data["new_state"]
entity = event.data["entity_id"]
if (
new_state is None
or new_state.state is None
or new_state.state
in [
STATE_UNKNOWN,
STATE_UNAVAILABLE,
]
):
self.states[entity] = STATE_UNKNOWN
if not update_state:
return
self._calc_values()
self.async_write_ha_state()
return
if self._unit_of_measurement is None:
self._unit_of_measurement = new_state.attributes.get(
ATTR_UNIT_OF_MEASUREMENT
)
if self._unit_of_measurement != new_state.attributes.get(
ATTR_UNIT_OF_MEASUREMENT
):
_LOGGER.warning(
"Units of measurement do not match for entity %s", self.entity_id
)
self._unit_of_measurement_mismatch = True
try:
self.states[entity] = float(new_state.state)
self.last = float(new_state.state)
self.last_entity_id = entity
except ValueError:
_LOGGER.warning(
"Unable to store state. Only numerical states are supported"
)
if not update_state:
return
self._calc_values()
self.async_write_ha_state()
@callback
def _calc_values(self) -> None:
"""Calculate the values."""
sensor_values = [
(entity_id, self.states[entity_id])
for entity_id in self._entity_ids
if entity_id in self.states
]
self.min_entity_id, self.min_value = calc_min(sensor_values)
self.max_entity_id, self.max_value = calc_max(sensor_values)
self.mean = calc_mean(sensor_values, self._round_digits)
self.median = calc_median(sensor_values, self._round_digits)
self.range = calc_range(sensor_values, self._round_digits)
self.sum = calc_sum(sensor_values, self._round_digits)