357 lines
12 KiB
Python
357 lines
12 KiB
Python
"""Support for Meteo-France raining forecast sensor."""
|
|
from __future__ import annotations
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Any, TypeVar
|
|
|
|
from meteofrance_api.helpers import (
|
|
get_warning_text_status_from_indice_color,
|
|
readeable_phenomenoms_dict,
|
|
)
|
|
from meteofrance_api.model.forecast import Forecast
|
|
from meteofrance_api.model.rain import Rain
|
|
from meteofrance_api.model.warning import CurrentPhenomenons
|
|
|
|
from homeassistant.components.sensor import (
|
|
SensorDeviceClass,
|
|
SensorEntity,
|
|
SensorEntityDescription,
|
|
SensorStateClass,
|
|
)
|
|
from homeassistant.config_entries import ConfigEntry
|
|
from homeassistant.const import (
|
|
PERCENTAGE,
|
|
UV_INDEX,
|
|
UnitOfPrecipitationDepth,
|
|
UnitOfPressure,
|
|
UnitOfSpeed,
|
|
UnitOfTemperature,
|
|
)
|
|
from homeassistant.core import HomeAssistant
|
|
from homeassistant.helpers.device_registry import DeviceEntryType, DeviceInfo
|
|
from homeassistant.helpers.entity_platform import AddEntitiesCallback
|
|
from homeassistant.helpers.update_coordinator import (
|
|
CoordinatorEntity,
|
|
DataUpdateCoordinator,
|
|
)
|
|
from homeassistant.util import dt as dt_util
|
|
|
|
from .const import (
|
|
ATTR_NEXT_RAIN_1_HOUR_FORECAST,
|
|
ATTR_NEXT_RAIN_DT_REF,
|
|
ATTRIBUTION,
|
|
COORDINATOR_ALERT,
|
|
COORDINATOR_FORECAST,
|
|
COORDINATOR_RAIN,
|
|
DOMAIN,
|
|
MANUFACTURER,
|
|
MODEL,
|
|
)
|
|
|
|
_DataT = TypeVar("_DataT", bound=Rain | Forecast | CurrentPhenomenons)
|
|
|
|
|
|
@dataclass
|
|
class MeteoFranceRequiredKeysMixin:
|
|
"""Mixin for required keys."""
|
|
|
|
data_path: str
|
|
|
|
|
|
@dataclass
|
|
class MeteoFranceSensorEntityDescription(
|
|
SensorEntityDescription, MeteoFranceRequiredKeysMixin
|
|
):
|
|
"""Describes Meteo-France sensor entity."""
|
|
|
|
|
|
SENSOR_TYPES: tuple[MeteoFranceSensorEntityDescription, ...] = (
|
|
MeteoFranceSensorEntityDescription(
|
|
key="pressure",
|
|
name="Pressure",
|
|
native_unit_of_measurement=UnitOfPressure.HPA,
|
|
device_class=SensorDeviceClass.PRESSURE,
|
|
state_class=SensorStateClass.MEASUREMENT,
|
|
entity_registry_enabled_default=False,
|
|
data_path="current_forecast:sea_level",
|
|
),
|
|
MeteoFranceSensorEntityDescription(
|
|
key="wind_gust",
|
|
name="Wind gust",
|
|
native_unit_of_measurement=UnitOfSpeed.KILOMETERS_PER_HOUR,
|
|
device_class=SensorDeviceClass.WIND_SPEED,
|
|
state_class=SensorStateClass.MEASUREMENT,
|
|
icon="mdi:weather-windy-variant",
|
|
entity_registry_enabled_default=False,
|
|
data_path="current_forecast:wind:gust",
|
|
),
|
|
MeteoFranceSensorEntityDescription(
|
|
key="wind_speed",
|
|
name="Wind speed",
|
|
native_unit_of_measurement=UnitOfSpeed.KILOMETERS_PER_HOUR,
|
|
device_class=SensorDeviceClass.WIND_SPEED,
|
|
state_class=SensorStateClass.MEASUREMENT,
|
|
entity_registry_enabled_default=False,
|
|
data_path="current_forecast:wind:speed",
|
|
),
|
|
MeteoFranceSensorEntityDescription(
|
|
key="temperature",
|
|
name="Temperature",
|
|
native_unit_of_measurement=UnitOfTemperature.CELSIUS,
|
|
device_class=SensorDeviceClass.TEMPERATURE,
|
|
state_class=SensorStateClass.MEASUREMENT,
|
|
entity_registry_enabled_default=False,
|
|
data_path="current_forecast:T:value",
|
|
),
|
|
MeteoFranceSensorEntityDescription(
|
|
key="uv",
|
|
name="UV",
|
|
native_unit_of_measurement=UV_INDEX,
|
|
icon="mdi:sunglasses",
|
|
data_path="today_forecast:uv",
|
|
),
|
|
MeteoFranceSensorEntityDescription(
|
|
key="precipitation",
|
|
name="Daily precipitation",
|
|
native_unit_of_measurement=UnitOfPrecipitationDepth.MILLIMETERS,
|
|
device_class=SensorDeviceClass.PRECIPITATION,
|
|
data_path="today_forecast:precipitation:24h",
|
|
),
|
|
MeteoFranceSensorEntityDescription(
|
|
key="cloud",
|
|
name="Cloud cover",
|
|
native_unit_of_measurement=PERCENTAGE,
|
|
icon="mdi:weather-partly-cloudy",
|
|
data_path="current_forecast:clouds",
|
|
),
|
|
MeteoFranceSensorEntityDescription(
|
|
key="original_condition",
|
|
name="Original condition",
|
|
entity_registry_enabled_default=False,
|
|
data_path="current_forecast:weather:desc",
|
|
),
|
|
MeteoFranceSensorEntityDescription(
|
|
key="daily_original_condition",
|
|
name="Daily original condition",
|
|
entity_registry_enabled_default=False,
|
|
data_path="today_forecast:weather12H:desc",
|
|
),
|
|
MeteoFranceSensorEntityDescription(
|
|
key="humidity",
|
|
name="Humidity",
|
|
native_unit_of_measurement=PERCENTAGE,
|
|
device_class=SensorDeviceClass.HUMIDITY,
|
|
state_class=SensorStateClass.MEASUREMENT,
|
|
data_path="current_forecast:humidity",
|
|
),
|
|
)
|
|
|
|
SENSOR_TYPES_RAIN: tuple[MeteoFranceSensorEntityDescription, ...] = (
|
|
MeteoFranceSensorEntityDescription(
|
|
key="next_rain",
|
|
name="Next rain",
|
|
device_class=SensorDeviceClass.TIMESTAMP,
|
|
data_path="",
|
|
),
|
|
)
|
|
|
|
SENSOR_TYPES_ALERT: tuple[MeteoFranceSensorEntityDescription, ...] = (
|
|
MeteoFranceSensorEntityDescription(
|
|
key="weather_alert",
|
|
name="Weather alert",
|
|
icon="mdi:weather-cloudy-alert",
|
|
data_path="",
|
|
),
|
|
)
|
|
|
|
SENSOR_TYPES_PROBABILITY: tuple[MeteoFranceSensorEntityDescription, ...] = (
|
|
MeteoFranceSensorEntityDescription(
|
|
key="rain_chance",
|
|
name="Rain chance",
|
|
native_unit_of_measurement=PERCENTAGE,
|
|
icon="mdi:weather-rainy",
|
|
data_path="probability_forecast:rain:3h",
|
|
),
|
|
MeteoFranceSensorEntityDescription(
|
|
key="snow_chance",
|
|
name="Snow chance",
|
|
native_unit_of_measurement=PERCENTAGE,
|
|
icon="mdi:weather-snowy",
|
|
data_path="probability_forecast:snow:3h",
|
|
),
|
|
MeteoFranceSensorEntityDescription(
|
|
key="freeze_chance",
|
|
name="Freeze chance",
|
|
native_unit_of_measurement=PERCENTAGE,
|
|
icon="mdi:snowflake",
|
|
data_path="probability_forecast:freezing",
|
|
),
|
|
)
|
|
|
|
|
|
async def async_setup_entry(
|
|
hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback
|
|
) -> None:
|
|
"""Set up the Meteo-France sensor platform."""
|
|
data = hass.data[DOMAIN][entry.entry_id]
|
|
coordinator_forecast: DataUpdateCoordinator[Forecast] = data[COORDINATOR_FORECAST]
|
|
coordinator_rain: DataUpdateCoordinator[Rain] | None = data[COORDINATOR_RAIN]
|
|
coordinator_alert: DataUpdateCoordinator[CurrentPhenomenons] | None = data.get(
|
|
COORDINATOR_ALERT
|
|
)
|
|
|
|
entities: list[MeteoFranceSensor[Any]] = [
|
|
MeteoFranceSensor(coordinator_forecast, description)
|
|
for description in SENSOR_TYPES
|
|
]
|
|
# Add rain forecast entity only if location support this feature
|
|
if coordinator_rain:
|
|
entities.extend(
|
|
[
|
|
MeteoFranceRainSensor(coordinator_rain, description)
|
|
for description in SENSOR_TYPES_RAIN
|
|
]
|
|
)
|
|
# Add weather alert entity only if location support this feature
|
|
if coordinator_alert:
|
|
entities.extend(
|
|
[
|
|
MeteoFranceAlertSensor(coordinator_alert, description)
|
|
for description in SENSOR_TYPES_ALERT
|
|
]
|
|
)
|
|
# Add weather probability entities only if location support this feature
|
|
if coordinator_forecast.data.probability_forecast:
|
|
entities.extend(
|
|
[
|
|
MeteoFranceSensor(coordinator_forecast, description)
|
|
for description in SENSOR_TYPES_PROBABILITY
|
|
]
|
|
)
|
|
|
|
async_add_entities(entities, False)
|
|
|
|
|
|
class MeteoFranceSensor(CoordinatorEntity[DataUpdateCoordinator[_DataT]], SensorEntity):
|
|
"""Representation of a Meteo-France sensor."""
|
|
|
|
entity_description: MeteoFranceSensorEntityDescription
|
|
_attr_attribution = ATTRIBUTION
|
|
|
|
def __init__(
|
|
self,
|
|
coordinator: DataUpdateCoordinator[_DataT],
|
|
description: MeteoFranceSensorEntityDescription,
|
|
) -> None:
|
|
"""Initialize the Meteo-France sensor."""
|
|
super().__init__(coordinator)
|
|
self.entity_description = description
|
|
if hasattr(coordinator.data, "position"):
|
|
city_name = coordinator.data.position["name"]
|
|
self._attr_name = f"{city_name} {description.name}"
|
|
self._attr_unique_id = f"{coordinator.data.position['lat']},{coordinator.data.position['lon']}_{description.key}"
|
|
|
|
@property
|
|
def device_info(self) -> DeviceInfo:
|
|
"""Return the device info."""
|
|
assert self.platform.config_entry and self.platform.config_entry.unique_id
|
|
return DeviceInfo(
|
|
entry_type=DeviceEntryType.SERVICE,
|
|
identifiers={(DOMAIN, self.platform.config_entry.unique_id)},
|
|
manufacturer=MANUFACTURER,
|
|
model=MODEL,
|
|
name=self.coordinator.name,
|
|
)
|
|
|
|
@property
|
|
def native_value(self):
|
|
"""Return the state."""
|
|
path = self.entity_description.data_path.split(":")
|
|
data = getattr(self.coordinator.data, path[0])
|
|
|
|
# Specific case for probability forecast
|
|
if path[0] == "probability_forecast":
|
|
if len(path) == 3:
|
|
# This is a fix compared to other entitty as first index is always null in API result for unknown reason
|
|
value = _find_first_probability_forecast_not_null(data, path)
|
|
else:
|
|
value = data[0][path[1]]
|
|
|
|
# General case
|
|
elif len(path) == 3:
|
|
value = data[path[1]][path[2]]
|
|
else:
|
|
value = data[path[1]]
|
|
|
|
if self.entity_description.key in ("wind_speed", "wind_gust"):
|
|
# convert API wind speed from m/s to km/h
|
|
value = round(value * 3.6)
|
|
return value
|
|
|
|
|
|
class MeteoFranceRainSensor(MeteoFranceSensor[Rain]):
|
|
"""Representation of a Meteo-France rain sensor."""
|
|
|
|
@property
|
|
def native_value(self):
|
|
"""Return the state."""
|
|
# search first cadran with rain
|
|
next_rain = next(
|
|
(cadran for cadran in self.coordinator.data.forecast if cadran["rain"] > 1),
|
|
None,
|
|
)
|
|
return dt_util.utc_from_timestamp(next_rain["dt"]) if next_rain else None
|
|
|
|
@property
|
|
def extra_state_attributes(self):
|
|
"""Return the state attributes."""
|
|
reference_dt = self.coordinator.data.forecast[0]["dt"]
|
|
return {
|
|
ATTR_NEXT_RAIN_DT_REF: dt_util.utc_from_timestamp(reference_dt).isoformat(),
|
|
ATTR_NEXT_RAIN_1_HOUR_FORECAST: {
|
|
f"{int((item['dt'] - reference_dt) / 60)} min": item["desc"]
|
|
for item in self.coordinator.data.forecast
|
|
},
|
|
}
|
|
|
|
|
|
class MeteoFranceAlertSensor(MeteoFranceSensor[CurrentPhenomenons]):
|
|
"""Representation of a Meteo-France alert sensor."""
|
|
|
|
def __init__(
|
|
self,
|
|
coordinator: DataUpdateCoordinator[CurrentPhenomenons],
|
|
description: MeteoFranceSensorEntityDescription,
|
|
) -> None:
|
|
"""Initialize the Meteo-France sensor."""
|
|
super().__init__(coordinator, description)
|
|
dept_code = self.coordinator.data.domain_id
|
|
self._attr_name = f"{dept_code} {description.name}"
|
|
self._attr_unique_id = self._attr_name
|
|
|
|
@property
|
|
def native_value(self):
|
|
"""Return the state."""
|
|
return get_warning_text_status_from_indice_color(
|
|
self.coordinator.data.get_domain_max_color()
|
|
)
|
|
|
|
@property
|
|
def extra_state_attributes(self):
|
|
"""Return the state attributes."""
|
|
return {
|
|
**readeable_phenomenoms_dict(self.coordinator.data.phenomenons_max_colors),
|
|
}
|
|
|
|
|
|
def _find_first_probability_forecast_not_null(
|
|
probability_forecast: list, path: list
|
|
) -> int | None:
|
|
"""Search the first not None value in the first forecast elements."""
|
|
for forecast in probability_forecast[0:3]:
|
|
if forecast[path[1]][path[2]] is not None:
|
|
return forecast[path[1]][path[2]]
|
|
|
|
# Default return value if no value founded
|
|
return None
|