core/homeassistant/components/statistics/sensor.py

661 lines
22 KiB
Python

"""Support for statistics for sensor values."""
from collections import deque
import contextlib
import logging
import statistics
import voluptuous as vol
from homeassistant.components.recorder.models import States
from homeassistant.components.recorder.util import execute, session_scope
from homeassistant.components.sensor import (
PLATFORM_SCHEMA,
STATE_CLASS_MEASUREMENT,
SensorEntity,
)
from homeassistant.const import (
ATTR_UNIT_OF_MEASUREMENT,
CONF_ENTITY_ID,
CONF_NAME,
STATE_UNAVAILABLE,
STATE_UNKNOWN,
)
from homeassistant.core import callback
from homeassistant.helpers import config_validation as cv
from homeassistant.helpers.event import (
async_track_point_in_utc_time,
async_track_state_change_event,
)
from homeassistant.helpers.reload import async_setup_reload_service
from homeassistant.helpers.start import async_at_start
from homeassistant.util import dt as dt_util
from . import DOMAIN, PLATFORMS
_LOGGER = logging.getLogger(__name__)
STAT_AGE_COVERAGE_RATIO = "age_coverage_ratio"
STAT_BUFFER_USAGE_RATIO = "buffer_usage_ratio"
STAT_SOURCE_VALUE_VALID = "source_value_valid"
STAT_AVERAGE_LINEAR = "average_linear"
STAT_AVERAGE_STEP = "average_step"
STAT_AVERAGE_TIMELESS = "average_timeless"
STAT_CHANGE = "change"
STAT_CHANGE_SAMPLE = "change_sample"
STAT_CHANGE_SECOND = "change_second"
STAT_COUNT = "count"
STAT_DATETIME_NEWEST = "datetime_newest"
STAT_DATETIME_OLDEST = "datetime_oldest"
STAT_DISTANCE_95P = "distance_95_percent_of_values"
STAT_DISTANCE_99P = "distance_99_percent_of_values"
STAT_DISTANCE_ABSOLUTE = "distance_absolute"
STAT_MEAN = "mean"
STAT_MEDIAN = "median"
STAT_NOISINESS = "noisiness"
STAT_QUANTILES = "quantiles"
STAT_STANDARD_DEVIATION = "standard_deviation"
STAT_TOTAL = "total"
STAT_VALUE_MAX = "value_max"
STAT_VALUE_MIN = "value_min"
STAT_VARIANCE = "variance"
STAT_DEFAULT = "default"
DEPRECATION_WARNING = (
"The configuration parameter 'state_characteristics' will become "
"mandatory in a future release of the statistics integration. "
"Please add 'state_characteristics: %s' to the configuration of "
'sensor "%s" to keep the current behavior. Read the documentation '
"for further details: "
"https://www.home-assistant.io/integrations/statistics/"
)
STATS_NOT_A_NUMBER = (
STAT_DATETIME_OLDEST,
STAT_DATETIME_NEWEST,
STAT_QUANTILES,
)
STATS_BINARY_SUPPORT = (
STAT_AVERAGE_STEP,
STAT_AVERAGE_TIMELESS,
STAT_COUNT,
STAT_MEAN,
STAT_DEFAULT,
)
CONF_STATE_CHARACTERISTIC = "state_characteristic"
CONF_SAMPLES_MAX_BUFFER_SIZE = "sampling_size"
CONF_MAX_AGE = "max_age"
CONF_PRECISION = "precision"
CONF_QUANTILE_INTERVALS = "quantile_intervals"
CONF_QUANTILE_METHOD = "quantile_method"
DEFAULT_NAME = "Stats"
DEFAULT_BUFFER_SIZE = 20
DEFAULT_PRECISION = 2
DEFAULT_QUANTILE_INTERVALS = 4
DEFAULT_QUANTILE_METHOD = "exclusive"
ICON = "mdi:calculator"
def valid_binary_characteristic_configuration(config):
"""Validate that the characteristic selected is valid for the source sensor type, throw if it isn't."""
if config.get(CONF_ENTITY_ID).split(".")[0] == "binary_sensor":
if config.get(CONF_STATE_CHARACTERISTIC) not in STATS_BINARY_SUPPORT:
raise ValueError(
"The configured characteristic '"
+ config.get(CONF_STATE_CHARACTERISTIC)
+ "' is not supported for a binary source sensor."
)
return config
_PLATFORM_SCHEMA_BASE = PLATFORM_SCHEMA.extend(
{
vol.Required(CONF_ENTITY_ID): cv.entity_id,
vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string,
vol.Optional(CONF_STATE_CHARACTERISTIC, default=STAT_DEFAULT): vol.In(
[
STAT_AVERAGE_LINEAR,
STAT_AVERAGE_STEP,
STAT_AVERAGE_TIMELESS,
STAT_CHANGE_SAMPLE,
STAT_CHANGE_SECOND,
STAT_CHANGE,
STAT_COUNT,
STAT_DATETIME_NEWEST,
STAT_DATETIME_OLDEST,
STAT_DISTANCE_95P,
STAT_DISTANCE_99P,
STAT_DISTANCE_ABSOLUTE,
STAT_MEAN,
STAT_MEDIAN,
STAT_NOISINESS,
STAT_QUANTILES,
STAT_STANDARD_DEVIATION,
STAT_TOTAL,
STAT_VALUE_MAX,
STAT_VALUE_MIN,
STAT_VARIANCE,
STAT_DEFAULT,
]
),
vol.Optional(
CONF_SAMPLES_MAX_BUFFER_SIZE, default=DEFAULT_BUFFER_SIZE
): vol.All(vol.Coerce(int), vol.Range(min=1)),
vol.Optional(CONF_MAX_AGE): cv.time_period,
vol.Optional(CONF_PRECISION, default=DEFAULT_PRECISION): vol.Coerce(int),
vol.Optional(
CONF_QUANTILE_INTERVALS, default=DEFAULT_QUANTILE_INTERVALS
): vol.All(vol.Coerce(int), vol.Range(min=2)),
vol.Optional(CONF_QUANTILE_METHOD, default=DEFAULT_QUANTILE_METHOD): vol.In(
["exclusive", "inclusive"]
),
}
)
PLATFORM_SCHEMA = vol.All(
_PLATFORM_SCHEMA_BASE,
valid_binary_characteristic_configuration,
)
async def async_setup_platform(hass, config, async_add_entities, discovery_info=None):
"""Set up the Statistics sensor."""
await async_setup_reload_service(hass, DOMAIN, PLATFORMS)
async_add_entities(
[
StatisticsSensor(
source_entity_id=config.get(CONF_ENTITY_ID),
name=config.get(CONF_NAME),
state_characteristic=config.get(CONF_STATE_CHARACTERISTIC),
samples_max_buffer_size=config.get(CONF_SAMPLES_MAX_BUFFER_SIZE),
samples_max_age=config.get(CONF_MAX_AGE),
precision=config.get(CONF_PRECISION),
quantile_intervals=config.get(CONF_QUANTILE_INTERVALS),
quantile_method=config.get(CONF_QUANTILE_METHOD),
)
],
True,
)
return True
class StatisticsSensor(SensorEntity):
"""Representation of a Statistics sensor."""
def __init__(
self,
source_entity_id,
name,
state_characteristic,
samples_max_buffer_size,
samples_max_age,
precision,
quantile_intervals,
quantile_method,
):
"""Initialize the Statistics sensor."""
self._source_entity_id = source_entity_id
self.is_binary = self._source_entity_id.split(".")[0] == "binary_sensor"
self._name = name
self._state_characteristic = state_characteristic
if self._state_characteristic == STAT_DEFAULT:
self._state_characteristic = STAT_COUNT if self.is_binary else STAT_MEAN
_LOGGER.warning(DEPRECATION_WARNING, self._state_characteristic, name)
self._samples_max_buffer_size = samples_max_buffer_size
self._samples_max_age = samples_max_age
self._precision = precision
self._quantile_intervals = quantile_intervals
self._quantile_method = quantile_method
self._value = None
self._unit_of_measurement = None
self._available = False
self.states = deque(maxlen=self._samples_max_buffer_size)
self.ages = deque(maxlen=self._samples_max_buffer_size)
self.attributes = {
STAT_AGE_COVERAGE_RATIO: None,
STAT_BUFFER_USAGE_RATIO: None,
STAT_SOURCE_VALUE_VALID: None,
}
if self.is_binary:
self._state_characteristic_fn = getattr(
self, f"_stat_binary_{self._state_characteristic}"
)
else:
self._state_characteristic_fn = getattr(
self, f"_stat_{self._state_characteristic}"
)
self._update_listener = None
async def async_added_to_hass(self):
"""Register callbacks."""
@callback
def async_stats_sensor_state_listener(event):
"""Handle the sensor state changes."""
if (new_state := event.data.get("new_state")) is None:
return
self._add_state_to_queue(new_state)
self.async_schedule_update_ha_state(True)
@callback
def async_stats_sensor_startup(_):
"""Add listener and get recorded state."""
_LOGGER.debug("Startup for %s", self.entity_id)
self.async_on_remove(
async_track_state_change_event(
self.hass,
[self._source_entity_id],
async_stats_sensor_state_listener,
)
)
if "recorder" in self.hass.config.components:
self.hass.async_create_task(self._initialize_from_database())
async_at_start(self.hass, async_stats_sensor_startup)
def _add_state_to_queue(self, new_state):
"""Add the state to the queue."""
self._available = new_state.state != STATE_UNAVAILABLE
if new_state.state == STATE_UNAVAILABLE:
self.attributes[STAT_SOURCE_VALUE_VALID] = None
return
if new_state.state in (STATE_UNKNOWN, None):
self.attributes[STAT_SOURCE_VALUE_VALID] = False
return
try:
if self.is_binary:
self.states.append(new_state.state)
else:
self.states.append(float(new_state.state))
self.ages.append(new_state.last_updated)
self.attributes[STAT_SOURCE_VALUE_VALID] = True
except ValueError:
self.attributes[STAT_SOURCE_VALUE_VALID] = False
_LOGGER.error(
"%s: parsing error, expected number and received %s",
self.entity_id,
new_state.state,
)
return
self._unit_of_measurement = self._derive_unit_of_measurement(new_state)
def _derive_unit_of_measurement(self, new_state):
base_unit = new_state.attributes.get(ATTR_UNIT_OF_MEASUREMENT)
if self.is_binary and self._state_characteristic in (
STAT_AVERAGE_STEP,
STAT_AVERAGE_TIMELESS,
STAT_MEAN,
):
unit = "%"
elif not base_unit:
unit = None
elif self._state_characteristic in (
STAT_AVERAGE_LINEAR,
STAT_AVERAGE_STEP,
STAT_AVERAGE_TIMELESS,
STAT_CHANGE,
STAT_DISTANCE_95P,
STAT_DISTANCE_99P,
STAT_DISTANCE_ABSOLUTE,
STAT_MEAN,
STAT_MEDIAN,
STAT_NOISINESS,
STAT_STANDARD_DEVIATION,
STAT_TOTAL,
STAT_VALUE_MAX,
STAT_VALUE_MIN,
):
unit = base_unit
elif self._state_characteristic in (
STAT_COUNT,
STAT_DATETIME_NEWEST,
STAT_DATETIME_OLDEST,
STAT_QUANTILES,
):
unit = None
elif self._state_characteristic == STAT_VARIANCE:
unit = base_unit + "²"
elif self._state_characteristic == STAT_CHANGE_SAMPLE:
unit = base_unit + "/sample"
elif self._state_characteristic == STAT_CHANGE_SECOND:
unit = base_unit + "/s"
return unit
@property
def name(self):
"""Return the name of the sensor."""
return self._name
@property
def state_class(self):
"""Return the state class of this entity."""
if self._state_characteristic in STATS_NOT_A_NUMBER:
return None
return STATE_CLASS_MEASUREMENT
@property
def native_value(self):
"""Return the state of the sensor."""
return self._value
@property
def native_unit_of_measurement(self):
"""Return the unit the value is expressed in."""
return self._unit_of_measurement
@property
def available(self):
"""Return the availability of the sensor linked to the source sensor."""
return self._available
@property
def should_poll(self):
"""No polling needed."""
return False
@property
def extra_state_attributes(self):
"""Return the state attributes of the sensor."""
return {
key: value for key, value in self.attributes.items() if value is not None
}
@property
def icon(self):
"""Return the icon to use in the frontend, if any."""
return ICON
def _purge_old(self):
"""Remove states which are older than self._samples_max_age."""
now = dt_util.utcnow()
_LOGGER.debug(
"%s: purging records older then %s(%s)",
self.entity_id,
dt_util.as_local(now - self._samples_max_age),
self._samples_max_age,
)
while self.ages and (now - self.ages[0]) > self._samples_max_age:
_LOGGER.debug(
"%s: purging record with datetime %s(%s)",
self.entity_id,
dt_util.as_local(self.ages[0]),
(now - self.ages[0]),
)
self.ages.popleft()
self.states.popleft()
def _next_to_purge_timestamp(self):
"""Find the timestamp when the next purge would occur."""
if self.ages and self._samples_max_age:
# Take the oldest entry from the ages list and add the configured max_age.
# If executed after purging old states, the result is the next timestamp
# in the future when the oldest state will expire.
return self.ages[0] + self._samples_max_age
return None
async def async_update(self):
"""Get the latest data and updates the states."""
_LOGGER.debug("%s: updating statistics", self.entity_id)
if self._samples_max_age is not None:
self._purge_old()
self._update_attributes()
self._update_value()
# If max_age is set, ensure to update again after the defined interval.
next_to_purge_timestamp = self._next_to_purge_timestamp()
if next_to_purge_timestamp:
_LOGGER.debug(
"%s: scheduling update at %s", self.entity_id, next_to_purge_timestamp
)
if self._update_listener:
self._update_listener()
self._update_listener = None
@callback
def _scheduled_update(now):
"""Timer callback for sensor update."""
_LOGGER.debug("%s: executing scheduled update", self.entity_id)
self.async_schedule_update_ha_state(True)
self._update_listener = None
self._update_listener = async_track_point_in_utc_time(
self.hass, _scheduled_update, next_to_purge_timestamp
)
async def _initialize_from_database(self):
"""Initialize the list of states from the database.
The query will get the list of states in DESCENDING order so that we
can limit the result to self._sample_size. Afterwards reverse the
list so that we get it in the right order again.
If MaxAge is provided then query will restrict to entries younger then
current datetime - MaxAge.
"""
_LOGGER.debug("%s: initializing values from the database", self.entity_id)
with session_scope(hass=self.hass) as session:
query = session.query(States).filter(
States.entity_id == self._source_entity_id.lower()
)
if self._samples_max_age is not None:
records_older_then = dt_util.utcnow() - self._samples_max_age
_LOGGER.debug(
"%s: retrieve records not older then %s",
self.entity_id,
records_older_then,
)
query = query.filter(States.last_updated >= records_older_then)
else:
_LOGGER.debug("%s: retrieving all records", self.entity_id)
query = query.order_by(States.last_updated.desc()).limit(
self._samples_max_buffer_size
)
states = execute(query, to_native=True, validate_entity_ids=False)
for state in reversed(states):
self._add_state_to_queue(state)
self.async_schedule_update_ha_state(True)
_LOGGER.debug("%s: initializing from database completed", self.entity_id)
def _update_attributes(self):
"""Calculate and update the various attributes."""
self.attributes[STAT_BUFFER_USAGE_RATIO] = round(
len(self.states) / self._samples_max_buffer_size, 2
)
if len(self.states) >= 1 and self._samples_max_age is not None:
self.attributes[STAT_AGE_COVERAGE_RATIO] = round(
(self.ages[-1] - self.ages[0]).total_seconds()
/ self._samples_max_age.total_seconds(),
2,
)
else:
self.attributes[STAT_AGE_COVERAGE_RATIO] = None
def _update_value(self):
"""Front to call the right statistical characteristics functions.
One of the _stat_*() functions is represented by self._state_characteristic_fn().
"""
value = self._state_characteristic_fn()
if self._state_characteristic not in STATS_NOT_A_NUMBER:
with contextlib.suppress(TypeError):
value = round(value, self._precision)
if self._precision == 0:
value = int(value)
self._value = value
# Statistics for numeric sensor
def _stat_average_linear(self):
if len(self.states) >= 2:
area = 0
for i in range(1, len(self.states)):
area += (
0.5
* (self.states[i] + self.states[i - 1])
* (self.ages[i] - self.ages[i - 1]).total_seconds()
)
age_range_seconds = (self.ages[-1] - self.ages[0]).total_seconds()
return area / age_range_seconds
return None
def _stat_average_step(self):
if len(self.states) >= 2:
area = 0
for i in range(1, len(self.states)):
area += (
self.states[i - 1]
* (self.ages[i] - self.ages[i - 1]).total_seconds()
)
age_range_seconds = (self.ages[-1] - self.ages[0]).total_seconds()
return area / age_range_seconds
return None
def _stat_average_timeless(self):
return self._stat_mean()
def _stat_change(self):
if len(self.states) > 0:
return self.states[-1] - self.states[0]
return None
def _stat_change_sample(self):
if len(self.states) > 1:
return (self.states[-1] - self.states[0]) / (len(self.states) - 1)
return None
def _stat_change_second(self):
if len(self.states) > 1:
age_range_seconds = (self.ages[-1] - self.ages[0]).total_seconds()
if age_range_seconds > 0:
return (self.states[-1] - self.states[0]) / age_range_seconds
return None
def _stat_count(self):
return len(self.states)
def _stat_datetime_newest(self):
if len(self.states) > 0:
return self.ages[-1]
return None
def _stat_datetime_oldest(self):
if len(self.states) > 0:
return self.ages[0]
return None
def _stat_distance_95_percent_of_values(self):
if len(self.states) >= 2:
return 2 * 1.96 * self._stat_standard_deviation()
return None
def _stat_distance_99_percent_of_values(self):
if len(self.states) >= 2:
return 2 * 2.58 * self._stat_standard_deviation()
return None
def _stat_distance_absolute(self):
if len(self.states) > 0:
return max(self.states) - min(self.states)
return None
def _stat_mean(self):
if len(self.states) > 0:
return statistics.mean(self.states)
return None
def _stat_median(self):
if len(self.states) > 0:
return statistics.median(self.states)
return None
def _stat_noisiness(self):
if len(self.states) >= 2:
diff_sum = sum(
abs(j - i) for i, j in zip(list(self.states), list(self.states)[1:])
)
return diff_sum / (len(self.states) - 1)
return None
def _stat_quantiles(self):
if len(self.states) > self._quantile_intervals:
return [
round(quantile, self._precision)
for quantile in statistics.quantiles(
self.states,
n=self._quantile_intervals,
method=self._quantile_method,
)
]
return None
def _stat_standard_deviation(self):
if len(self.states) >= 2:
return statistics.stdev(self.states)
return None
def _stat_total(self):
if len(self.states) > 0:
return sum(self.states)
return None
def _stat_value_max(self):
if len(self.states) > 0:
return max(self.states)
return None
def _stat_value_min(self):
if len(self.states) > 0:
return min(self.states)
return None
def _stat_variance(self):
if len(self.states) >= 2:
return statistics.variance(self.states)
return None
# Statistics for binary sensor
def _stat_binary_average_step(self):
if len(self.states) >= 2:
on_seconds = 0
for i in range(1, len(self.states)):
if self.states[i - 1] == "on":
on_seconds += (self.ages[i] - self.ages[i - 1]).total_seconds()
age_range_seconds = (self.ages[-1] - self.ages[0]).total_seconds()
return 100 / age_range_seconds * on_seconds
return None
def _stat_binary_average_timeless(self):
return self._stat_binary_mean()
def _stat_binary_count(self):
return len(self.states)
def _stat_binary_mean(self):
if len(self.states) > 0:
return 100.0 / len(self.states) * self.states.count("on")
return None