core/homeassistant/components/min_max/sensor.py

256 lines
7.7 KiB
Python

"""Support for displaying minimal, maximal, mean or median values."""
import logging
import voluptuous as vol
from homeassistant.components.sensor import PLATFORM_SCHEMA
from homeassistant.const import (
ATTR_UNIT_OF_MEASUREMENT,
CONF_NAME,
CONF_TYPE,
STATE_UNAVAILABLE,
STATE_UNKNOWN,
)
from homeassistant.core import callback
import homeassistant.helpers.config_validation as cv
from homeassistant.helpers.entity import Entity
from homeassistant.helpers.event import async_track_state_change_event
from homeassistant.helpers.reload import async_setup_reload_service
from . import DOMAIN, PLATFORMS
_LOGGER = logging.getLogger(__name__)
ATTR_MIN_VALUE = "min_value"
ATTR_MIN_ENTITY_ID = "min_entity_id"
ATTR_MAX_VALUE = "max_value"
ATTR_MAX_ENTITY_ID = "max_entity_id"
ATTR_COUNT_SENSORS = "count_sensors"
ATTR_MEAN = "mean"
ATTR_MEDIAN = "median"
ATTR_LAST = "last"
ATTR_LAST_ENTITY_ID = "last_entity_id"
ATTR_TO_PROPERTY = [
ATTR_COUNT_SENSORS,
ATTR_MAX_VALUE,
ATTR_MAX_ENTITY_ID,
ATTR_MEAN,
ATTR_MEDIAN,
ATTR_MIN_VALUE,
ATTR_MIN_ENTITY_ID,
ATTR_LAST,
ATTR_LAST_ENTITY_ID,
]
CONF_ENTITY_IDS = "entity_ids"
CONF_ROUND_DIGITS = "round_digits"
ICON = "mdi:calculator"
SENSOR_TYPES = {
ATTR_MIN_VALUE: "min",
ATTR_MAX_VALUE: "max",
ATTR_MEAN: "mean",
ATTR_MEDIAN: "median",
ATTR_LAST: "last",
}
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend(
{
vol.Optional(CONF_TYPE, default=SENSOR_TYPES[ATTR_MAX_VALUE]): vol.All(
cv.string, vol.In(SENSOR_TYPES.values())
),
vol.Optional(CONF_NAME): cv.string,
vol.Required(CONF_ENTITY_IDS): cv.entity_ids,
vol.Optional(CONF_ROUND_DIGITS, default=2): vol.Coerce(int),
}
)
async def async_setup_platform(hass, config, async_add_entities, discovery_info=None):
"""Set up the min/max/mean sensor."""
entity_ids = config.get(CONF_ENTITY_IDS)
name = config.get(CONF_NAME)
sensor_type = config.get(CONF_TYPE)
round_digits = config.get(CONF_ROUND_DIGITS)
await async_setup_reload_service(hass, DOMAIN, PLATFORMS)
async_add_entities([MinMaxSensor(entity_ids, name, sensor_type, round_digits)])
def calc_min(sensor_values):
"""Calculate min value, honoring unknown states."""
val = None
entity_id = None
for sensor_id, sensor_value in sensor_values:
if sensor_value not in [STATE_UNKNOWN, STATE_UNAVAILABLE]:
if val is None or val > sensor_value:
entity_id, val = sensor_id, sensor_value
return entity_id, val
def calc_max(sensor_values):
"""Calculate max value, honoring unknown states."""
val = None
entity_id = None
for sensor_id, sensor_value in sensor_values:
if sensor_value not in [STATE_UNKNOWN, STATE_UNAVAILABLE]:
if val is None or val < sensor_value:
entity_id, val = sensor_id, sensor_value
return entity_id, val
def calc_mean(sensor_values, round_digits):
"""Calculate mean value, honoring unknown states."""
result = []
for _, sensor_value in sensor_values:
if sensor_value not in [STATE_UNKNOWN, STATE_UNAVAILABLE]:
result.append(sensor_value)
if len(result) == 0:
return None
return round(sum(result) / len(result), round_digits)
def calc_median(sensor_values, round_digits):
"""Calculate median value, honoring unknown states."""
result = []
for _, sensor_value in sensor_values:
if sensor_value not in [STATE_UNKNOWN, STATE_UNAVAILABLE]:
result.append(sensor_value)
if len(result) == 0:
return None
result.sort()
if len(result) % 2 == 0:
median1 = result[len(result) // 2]
median2 = result[len(result) // 2 - 1]
median = (median1 + median2) / 2
else:
median = result[len(result) // 2]
return round(median, round_digits)
class MinMaxSensor(Entity):
"""Representation of a min/max sensor."""
def __init__(self, entity_ids, name, sensor_type, round_digits):
"""Initialize the min/max sensor."""
self._entity_ids = entity_ids
self._sensor_type = sensor_type
self._round_digits = round_digits
if name:
self._name = name
else:
self._name = f"{next(v for k, v in SENSOR_TYPES.items() if self._sensor_type == v)} sensor".capitalize()
self._unit_of_measurement = None
self._unit_of_measurement_mismatch = False
self.min_value = self.max_value = self.mean = self.last = self.median = None
self.min_entity_id = self.max_entity_id = self.last_entity_id = None
self.count_sensors = len(self._entity_ids)
self.states = {}
async def async_added_to_hass(self):
"""Handle added to Hass."""
self.async_on_remove(
async_track_state_change_event(
self.hass, self._entity_ids, self._async_min_max_sensor_state_listener
)
)
self._calc_values()
@property
def name(self):
"""Return the name of the sensor."""
return self._name
@property
def state(self):
"""Return the state of the sensor."""
if self._unit_of_measurement_mismatch:
return None
return getattr(
self, next(k for k, v in SENSOR_TYPES.items() if self._sensor_type == v)
)
@property
def unit_of_measurement(self):
"""Return the unit the value is expressed in."""
if self._unit_of_measurement_mismatch:
return "ERR"
return self._unit_of_measurement
@property
def should_poll(self):
"""No polling needed."""
return False
@property
def device_state_attributes(self):
"""Return the state attributes of the sensor."""
return {
attr: getattr(self, attr)
for attr in ATTR_TO_PROPERTY
if getattr(self, attr) is not None
}
@property
def icon(self):
"""Return the icon to use in the frontend, if any."""
return ICON
@callback
def _async_min_max_sensor_state_listener(self, event):
"""Handle the sensor state changes."""
new_state = event.data.get("new_state")
entity = event.data.get("entity_id")
if new_state.state is None or new_state.state in [
STATE_UNKNOWN,
STATE_UNAVAILABLE,
]:
self.states[entity] = STATE_UNKNOWN
self._calc_values()
self.async_write_ha_state()
return
if self._unit_of_measurement is None:
self._unit_of_measurement = new_state.attributes.get(
ATTR_UNIT_OF_MEASUREMENT
)
if self._unit_of_measurement != new_state.attributes.get(
ATTR_UNIT_OF_MEASUREMENT
):
_LOGGER.warning(
"Units of measurement do not match for entity %s", self.entity_id
)
self._unit_of_measurement_mismatch = True
try:
self.states[entity] = float(new_state.state)
self.last = float(new_state.state)
self.last_entity_id = entity
except ValueError:
_LOGGER.warning(
"Unable to store state. Only numerical states are supported"
)
self._calc_values()
self.async_write_ha_state()
@callback
def _calc_values(self):
"""Calculate the values."""
sensor_values = [
(entity_id, self.states[entity_id])
for entity_id in self._entity_ids
if entity_id in self.states
]
self.min_entity_id, self.min_value = calc_min(sensor_values)
self.max_entity_id, self.max_value = calc_max(sensor_values)
self.mean = calc_mean(sensor_values, self._round_digits)
self.median = calc_median(sensor_values, self._round_digits)