288 lines
9.7 KiB
Python
288 lines
9.7 KiB
Python
"""Queries for logbook."""
|
|
from __future__ import annotations
|
|
|
|
from datetime import datetime as dt
|
|
|
|
import sqlalchemy
|
|
from sqlalchemy import select
|
|
from sqlalchemy.orm import Query
|
|
from sqlalchemy.sql.elements import ClauseList
|
|
from sqlalchemy.sql.expression import literal
|
|
from sqlalchemy.sql.selectable import Select
|
|
|
|
from homeassistant.components.recorder.db_schema import (
|
|
EVENTS_CONTEXT_ID_INDEX,
|
|
OLD_FORMAT_ATTRS_JSON,
|
|
OLD_STATE,
|
|
SHARED_ATTRS_JSON,
|
|
STATES_CONTEXT_ID_INDEX,
|
|
EventData,
|
|
Events,
|
|
StateAttributes,
|
|
States,
|
|
)
|
|
from homeassistant.components.recorder.filters import like_domain_matchers
|
|
|
|
from ..const import ALWAYS_CONTINUOUS_DOMAINS, CONDITIONALLY_CONTINUOUS_DOMAINS
|
|
|
|
# Domains that are continuous if there is a UOM set on the entity
|
|
CONDITIONALLY_CONTINUOUS_ENTITY_ID_LIKE = like_domain_matchers(
|
|
CONDITIONALLY_CONTINUOUS_DOMAINS
|
|
)
|
|
# Domains that are always continuous
|
|
ALWAYS_CONTINUOUS_ENTITY_ID_LIKE = like_domain_matchers(ALWAYS_CONTINUOUS_DOMAINS)
|
|
|
|
UNIT_OF_MEASUREMENT_JSON = '"unit_of_measurement":'
|
|
UNIT_OF_MEASUREMENT_JSON_LIKE = f"%{UNIT_OF_MEASUREMENT_JSON}%"
|
|
|
|
PSUEDO_EVENT_STATE_CHANGED = None
|
|
# Since we don't store event_types and None
|
|
# and we don't store state_changed in events
|
|
# we use a NULL for state_changed events
|
|
# when we synthesize them from the states table
|
|
# since it avoids another column being sent
|
|
# in the payload
|
|
|
|
EVENT_COLUMNS = (
|
|
Events.event_id.label("event_id"),
|
|
Events.event_type.label("event_type"),
|
|
Events.event_data.label("event_data"),
|
|
Events.time_fired.label("time_fired"),
|
|
Events.context_id.label("context_id"),
|
|
Events.context_user_id.label("context_user_id"),
|
|
Events.context_parent_id.label("context_parent_id"),
|
|
)
|
|
|
|
STATE_COLUMNS = (
|
|
States.state_id.label("state_id"),
|
|
States.state.label("state"),
|
|
States.entity_id.label("entity_id"),
|
|
SHARED_ATTRS_JSON["icon"].as_string().label("icon"),
|
|
OLD_FORMAT_ATTRS_JSON["icon"].as_string().label("old_format_icon"),
|
|
)
|
|
|
|
STATE_CONTEXT_ONLY_COLUMNS = (
|
|
States.state_id.label("state_id"),
|
|
States.state.label("state"),
|
|
States.entity_id.label("entity_id"),
|
|
literal(value=None, type_=sqlalchemy.String).label("icon"),
|
|
literal(value=None, type_=sqlalchemy.String).label("old_format_icon"),
|
|
)
|
|
|
|
EVENT_COLUMNS_FOR_STATE_SELECT = [
|
|
literal(value=None, type_=sqlalchemy.Text).label("event_id"),
|
|
# We use PSUEDO_EVENT_STATE_CHANGED aka None for
|
|
# state_changed events since it takes up less
|
|
# space in the response and every row has to be
|
|
# marked with the event_type
|
|
literal(value=PSUEDO_EVENT_STATE_CHANGED, type_=sqlalchemy.String).label(
|
|
"event_type"
|
|
),
|
|
literal(value=None, type_=sqlalchemy.Text).label("event_data"),
|
|
States.last_updated.label("time_fired"),
|
|
States.context_id.label("context_id"),
|
|
States.context_user_id.label("context_user_id"),
|
|
States.context_parent_id.label("context_parent_id"),
|
|
literal(value=None, type_=sqlalchemy.Text).label("shared_data"),
|
|
]
|
|
|
|
EMPTY_STATE_COLUMNS = (
|
|
literal(value=0, type_=sqlalchemy.Integer).label("state_id"),
|
|
literal(value=None, type_=sqlalchemy.String).label("state"),
|
|
literal(value=None, type_=sqlalchemy.String).label("entity_id"),
|
|
literal(value=None, type_=sqlalchemy.String).label("icon"),
|
|
literal(value=None, type_=sqlalchemy.String).label("old_format_icon"),
|
|
)
|
|
|
|
|
|
EVENT_ROWS_NO_STATES = (
|
|
*EVENT_COLUMNS,
|
|
EventData.shared_data.label("shared_data"),
|
|
*EMPTY_STATE_COLUMNS,
|
|
)
|
|
|
|
# Virtual column to tell logbook if it should avoid processing
|
|
# the event as its only used to link contexts
|
|
CONTEXT_ONLY = literal("1").label("context_only")
|
|
NOT_CONTEXT_ONLY = literal(None).label("context_only")
|
|
|
|
|
|
def select_events_context_id_subquery(
|
|
start_day: dt,
|
|
end_day: dt,
|
|
event_types: tuple[str, ...],
|
|
) -> Select:
|
|
"""Generate the select for a context_id subquery."""
|
|
return (
|
|
select(Events.context_id)
|
|
.where((Events.time_fired > start_day) & (Events.time_fired < end_day))
|
|
.where(Events.event_type.in_(event_types))
|
|
.outerjoin(EventData, (Events.data_id == EventData.data_id))
|
|
)
|
|
|
|
|
|
def select_events_context_only() -> Select:
|
|
"""Generate an events query that mark them as for context_only.
|
|
|
|
By marking them as context_only we know they are only for
|
|
linking context ids and we can avoid processing them.
|
|
"""
|
|
return select(*EVENT_ROWS_NO_STATES, CONTEXT_ONLY)
|
|
|
|
|
|
def select_states_context_only() -> Select:
|
|
"""Generate an states query that mark them as for context_only.
|
|
|
|
By marking them as context_only we know they are only for
|
|
linking context ids and we can avoid processing them.
|
|
"""
|
|
return select(
|
|
*EVENT_COLUMNS_FOR_STATE_SELECT, *STATE_CONTEXT_ONLY_COLUMNS, CONTEXT_ONLY
|
|
)
|
|
|
|
|
|
def select_events_without_states(
|
|
start_day: dt, end_day: dt, event_types: tuple[str, ...]
|
|
) -> Select:
|
|
"""Generate an events select that does not join states."""
|
|
return (
|
|
select(*EVENT_ROWS_NO_STATES, NOT_CONTEXT_ONLY)
|
|
.where((Events.time_fired > start_day) & (Events.time_fired < end_day))
|
|
.where(Events.event_type.in_(event_types))
|
|
.outerjoin(EventData, (Events.data_id == EventData.data_id))
|
|
)
|
|
|
|
|
|
def select_states() -> Select:
|
|
"""Generate a states select that formats the states table as event rows."""
|
|
return select(
|
|
*EVENT_COLUMNS_FOR_STATE_SELECT,
|
|
*STATE_COLUMNS,
|
|
NOT_CONTEXT_ONLY,
|
|
)
|
|
|
|
|
|
def legacy_select_events_context_id(
|
|
start_day: dt, end_day: dt, context_id: str
|
|
) -> Select:
|
|
"""Generate a legacy events context id select that also joins states."""
|
|
# This can be removed once we no longer have event_ids in the states table
|
|
return (
|
|
select(
|
|
*EVENT_COLUMNS,
|
|
literal(value=None, type_=sqlalchemy.String).label("shared_data"),
|
|
*STATE_COLUMNS,
|
|
NOT_CONTEXT_ONLY,
|
|
)
|
|
.outerjoin(States, (Events.event_id == States.event_id))
|
|
.where(
|
|
(States.last_updated == States.last_changed) | States.last_changed.is_(None)
|
|
)
|
|
.where(_not_continuous_entity_matcher())
|
|
.outerjoin(
|
|
StateAttributes, (States.attributes_id == StateAttributes.attributes_id)
|
|
)
|
|
.where((Events.time_fired > start_day) & (Events.time_fired < end_day))
|
|
.where(Events.context_id == context_id)
|
|
)
|
|
|
|
|
|
def apply_states_filters(query: Query, start_day: dt, end_day: dt) -> Query:
|
|
"""Filter states by time range.
|
|
|
|
Filters states that do not have an old state or new state (added / removed)
|
|
Filters states that are in a continuous domain with a UOM.
|
|
Filters states that do not have matching last_updated and last_changed.
|
|
"""
|
|
return (
|
|
query.filter(
|
|
(States.last_updated > start_day) & (States.last_updated < end_day)
|
|
)
|
|
.outerjoin(OLD_STATE, (States.old_state_id == OLD_STATE.state_id))
|
|
.where(_missing_state_matcher())
|
|
.where(_not_continuous_entity_matcher())
|
|
.where(
|
|
(States.last_updated == States.last_changed) | States.last_changed.is_(None)
|
|
)
|
|
.outerjoin(
|
|
StateAttributes, (States.attributes_id == StateAttributes.attributes_id)
|
|
)
|
|
)
|
|
|
|
|
|
def _missing_state_matcher() -> sqlalchemy.and_:
|
|
# The below removes state change events that do not have
|
|
# and old_state or the old_state is missing (newly added entities)
|
|
# or the new_state is missing (removed entities)
|
|
return sqlalchemy.and_(
|
|
OLD_STATE.state_id.isnot(None),
|
|
(States.state != OLD_STATE.state),
|
|
States.state.isnot(None),
|
|
)
|
|
|
|
|
|
def _not_continuous_entity_matcher() -> sqlalchemy.or_:
|
|
"""Match non continuous entities."""
|
|
return sqlalchemy.or_(
|
|
# First exclude domains that may be continuous
|
|
_not_possible_continuous_domain_matcher(),
|
|
# But let in the entities in the possible continuous domains
|
|
# that are not actually continuous sensors because they lack a UOM
|
|
sqlalchemy.and_(
|
|
_conditionally_continuous_domain_matcher, _not_uom_attributes_matcher()
|
|
).self_group(),
|
|
)
|
|
|
|
|
|
def _not_possible_continuous_domain_matcher() -> sqlalchemy.and_:
|
|
"""Match not continuous domains.
|
|
|
|
This matches domain that are always considered continuous
|
|
and domains that are conditionally (if they have a UOM)
|
|
continuous domains.
|
|
"""
|
|
return sqlalchemy.and_(
|
|
*[
|
|
~States.entity_id.like(entity_domain)
|
|
for entity_domain in (
|
|
*ALWAYS_CONTINUOUS_ENTITY_ID_LIKE,
|
|
*CONDITIONALLY_CONTINUOUS_ENTITY_ID_LIKE,
|
|
)
|
|
],
|
|
).self_group()
|
|
|
|
|
|
def _conditionally_continuous_domain_matcher() -> sqlalchemy.or_:
|
|
"""Match conditionally continuous domains.
|
|
|
|
This matches domain that are only considered
|
|
continuous if a UOM is set.
|
|
"""
|
|
return sqlalchemy.or_(
|
|
*[
|
|
States.entity_id.like(entity_domain)
|
|
for entity_domain in CONDITIONALLY_CONTINUOUS_ENTITY_ID_LIKE
|
|
],
|
|
).self_group()
|
|
|
|
|
|
def _not_uom_attributes_matcher() -> ClauseList:
|
|
"""Prefilter ATTR_UNIT_OF_MEASUREMENT as its much faster in sql."""
|
|
return ~StateAttributes.shared_attrs.like(
|
|
UNIT_OF_MEASUREMENT_JSON_LIKE
|
|
) | ~States.attributes.like(UNIT_OF_MEASUREMENT_JSON_LIKE)
|
|
|
|
|
|
def apply_states_context_hints(query: Query) -> Query:
|
|
"""Force mysql to use the right index on large context_id selects."""
|
|
return query.with_hint(
|
|
States, f"FORCE INDEX ({STATES_CONTEXT_ID_INDEX})", dialect_name="mysql"
|
|
)
|
|
|
|
|
|
def apply_events_context_hints(query: Query) -> Query:
|
|
"""Force mysql to use the right index on large context_id selects."""
|
|
return query.with_hint(
|
|
Events, f"FORCE INDEX ({EVENTS_CONTEXT_ID_INDEX})", dialect_name="mysql"
|
|
)
|