383 lines
12 KiB
Python
383 lines
12 KiB
Python
"""Support for the DOODS service."""
|
|
import io
|
|
import logging
|
|
import time
|
|
|
|
from PIL import Image, ImageDraw, UnidentifiedImageError
|
|
from pydoods import PyDOODS
|
|
import voluptuous as vol
|
|
|
|
from homeassistant.components.image_processing import (
|
|
CONF_CONFIDENCE,
|
|
CONF_ENTITY_ID,
|
|
CONF_NAME,
|
|
CONF_SOURCE,
|
|
PLATFORM_SCHEMA,
|
|
ImageProcessingEntity,
|
|
)
|
|
from homeassistant.const import CONF_TIMEOUT
|
|
from homeassistant.core import split_entity_id
|
|
from homeassistant.helpers import template
|
|
import homeassistant.helpers.config_validation as cv
|
|
from homeassistant.util.pil import draw_box
|
|
|
|
_LOGGER = logging.getLogger(__name__)
|
|
|
|
ATTR_MATCHES = "matches"
|
|
ATTR_SUMMARY = "summary"
|
|
ATTR_TOTAL_MATCHES = "total_matches"
|
|
|
|
CONF_URL = "url"
|
|
CONF_AUTH_KEY = "auth_key"
|
|
CONF_DETECTOR = "detector"
|
|
CONF_LABELS = "labels"
|
|
CONF_AREA = "area"
|
|
CONF_COVERS = "covers"
|
|
CONF_TOP = "top"
|
|
CONF_BOTTOM = "bottom"
|
|
CONF_RIGHT = "right"
|
|
CONF_LEFT = "left"
|
|
CONF_FILE_OUT = "file_out"
|
|
|
|
AREA_SCHEMA = vol.Schema(
|
|
{
|
|
vol.Optional(CONF_BOTTOM, default=1): cv.small_float,
|
|
vol.Optional(CONF_LEFT, default=0): cv.small_float,
|
|
vol.Optional(CONF_RIGHT, default=1): cv.small_float,
|
|
vol.Optional(CONF_TOP, default=0): cv.small_float,
|
|
vol.Optional(CONF_COVERS, default=True): cv.boolean,
|
|
}
|
|
)
|
|
|
|
LABEL_SCHEMA = vol.Schema(
|
|
{
|
|
vol.Required(CONF_NAME): cv.string,
|
|
vol.Optional(CONF_AREA): AREA_SCHEMA,
|
|
vol.Optional(CONF_CONFIDENCE): vol.Range(min=0, max=100),
|
|
}
|
|
)
|
|
|
|
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend(
|
|
{
|
|
vol.Required(CONF_URL): cv.string,
|
|
vol.Required(CONF_DETECTOR): cv.string,
|
|
vol.Required(CONF_TIMEOUT, default=90): cv.positive_int,
|
|
vol.Optional(CONF_AUTH_KEY, default=""): cv.string,
|
|
vol.Optional(CONF_FILE_OUT, default=[]): vol.All(cv.ensure_list, [cv.template]),
|
|
vol.Optional(CONF_CONFIDENCE, default=0.0): vol.Range(min=0, max=100),
|
|
vol.Optional(CONF_LABELS, default=[]): vol.All(
|
|
cv.ensure_list, [vol.Any(cv.string, LABEL_SCHEMA)]
|
|
),
|
|
vol.Optional(CONF_AREA): AREA_SCHEMA,
|
|
}
|
|
)
|
|
|
|
|
|
def setup_platform(hass, config, add_entities, discovery_info=None):
|
|
"""Set up the Doods client."""
|
|
url = config[CONF_URL]
|
|
auth_key = config[CONF_AUTH_KEY]
|
|
detector_name = config[CONF_DETECTOR]
|
|
timeout = config[CONF_TIMEOUT]
|
|
|
|
doods = PyDOODS(url, auth_key, timeout)
|
|
response = doods.get_detectors()
|
|
if not isinstance(response, dict):
|
|
_LOGGER.warning("Could not connect to doods server: %s", url)
|
|
return
|
|
|
|
detector = {}
|
|
for server_detector in response["detectors"]:
|
|
if server_detector["name"] == detector_name:
|
|
detector = server_detector
|
|
break
|
|
|
|
if not detector:
|
|
_LOGGER.warning(
|
|
"Detector %s is not supported by doods server %s", detector_name, url
|
|
)
|
|
return
|
|
|
|
entities = []
|
|
for camera in config[CONF_SOURCE]:
|
|
entities.append(
|
|
Doods(
|
|
hass,
|
|
camera[CONF_ENTITY_ID],
|
|
camera.get(CONF_NAME),
|
|
doods,
|
|
detector,
|
|
config,
|
|
)
|
|
)
|
|
add_entities(entities)
|
|
|
|
|
|
class Doods(ImageProcessingEntity):
|
|
"""Doods image processing service client."""
|
|
|
|
def __init__(self, hass, camera_entity, name, doods, detector, config):
|
|
"""Initialize the DOODS entity."""
|
|
self.hass = hass
|
|
self._camera_entity = camera_entity
|
|
if name:
|
|
self._name = name
|
|
else:
|
|
name = split_entity_id(camera_entity)[1]
|
|
self._name = f"Doods {name}"
|
|
self._doods = doods
|
|
self._file_out = config[CONF_FILE_OUT]
|
|
self._detector_name = detector["name"]
|
|
|
|
# detector config and aspect ratio
|
|
self._width = None
|
|
self._height = None
|
|
self._aspect = None
|
|
if detector["width"] and detector["height"]:
|
|
self._width = detector["width"]
|
|
self._height = detector["height"]
|
|
self._aspect = self._width / self._height
|
|
|
|
# the base confidence
|
|
dconfig = {}
|
|
confidence = config[CONF_CONFIDENCE]
|
|
|
|
# handle labels and specific detection areas
|
|
labels = config[CONF_LABELS]
|
|
self._label_areas = {}
|
|
self._label_covers = {}
|
|
for label in labels:
|
|
if isinstance(label, dict):
|
|
label_name = label[CONF_NAME]
|
|
if label_name not in detector["labels"] and label_name != "*":
|
|
_LOGGER.warning("Detector does not support label %s", label_name)
|
|
continue
|
|
|
|
# If label confidence is not specified, use global confidence
|
|
label_confidence = label.get(CONF_CONFIDENCE)
|
|
if not label_confidence:
|
|
label_confidence = confidence
|
|
if label_name not in dconfig or dconfig[label_name] > label_confidence:
|
|
dconfig[label_name] = label_confidence
|
|
|
|
# Label area
|
|
label_area = label.get(CONF_AREA)
|
|
self._label_areas[label_name] = [0, 0, 1, 1]
|
|
self._label_covers[label_name] = True
|
|
if label_area:
|
|
self._label_areas[label_name] = [
|
|
label_area[CONF_TOP],
|
|
label_area[CONF_LEFT],
|
|
label_area[CONF_BOTTOM],
|
|
label_area[CONF_RIGHT],
|
|
]
|
|
self._label_covers[label_name] = label_area[CONF_COVERS]
|
|
else:
|
|
if label not in detector["labels"] and label != "*":
|
|
_LOGGER.warning("Detector does not support label %s", label)
|
|
continue
|
|
self._label_areas[label] = [0, 0, 1, 1]
|
|
self._label_covers[label] = True
|
|
if label not in dconfig or dconfig[label] > confidence:
|
|
dconfig[label] = confidence
|
|
|
|
if not dconfig:
|
|
dconfig["*"] = confidence
|
|
|
|
# Handle global detection area
|
|
self._area = [0, 0, 1, 1]
|
|
self._covers = True
|
|
area_config = config.get(CONF_AREA)
|
|
if area_config:
|
|
self._area = [
|
|
area_config[CONF_TOP],
|
|
area_config[CONF_LEFT],
|
|
area_config[CONF_BOTTOM],
|
|
area_config[CONF_RIGHT],
|
|
]
|
|
self._covers = area_config[CONF_COVERS]
|
|
|
|
template.attach(hass, self._file_out)
|
|
|
|
self._dconfig = dconfig
|
|
self._matches = {}
|
|
self._total_matches = 0
|
|
self._last_image = None
|
|
|
|
@property
|
|
def camera_entity(self):
|
|
"""Return camera entity id from process pictures."""
|
|
return self._camera_entity
|
|
|
|
@property
|
|
def name(self):
|
|
"""Return the name of the image processor."""
|
|
return self._name
|
|
|
|
@property
|
|
def state(self):
|
|
"""Return the state of the entity."""
|
|
return self._total_matches
|
|
|
|
@property
|
|
def device_state_attributes(self):
|
|
"""Return device specific state attributes."""
|
|
return {
|
|
ATTR_MATCHES: self._matches,
|
|
ATTR_SUMMARY: {
|
|
label: len(values) for label, values in self._matches.items()
|
|
},
|
|
ATTR_TOTAL_MATCHES: self._total_matches,
|
|
}
|
|
|
|
def _save_image(self, image, matches, paths):
|
|
img = Image.open(io.BytesIO(bytearray(image))).convert("RGB")
|
|
img_width, img_height = img.size
|
|
draw = ImageDraw.Draw(img)
|
|
|
|
# Draw custom global region/area
|
|
if self._area != [0, 0, 1, 1]:
|
|
draw_box(
|
|
draw, self._area, img_width, img_height, "Detection Area", (0, 255, 255)
|
|
)
|
|
|
|
for label, values in matches.items():
|
|
|
|
# Draw custom label regions/areas
|
|
if label in self._label_areas and self._label_areas[label] != [0, 0, 1, 1]:
|
|
box_label = f"{label.capitalize()} Detection Area"
|
|
draw_box(
|
|
draw,
|
|
self._label_areas[label],
|
|
img_width,
|
|
img_height,
|
|
box_label,
|
|
(0, 255, 0),
|
|
)
|
|
|
|
# Draw detected objects
|
|
for instance in values:
|
|
box_label = f'{label} {instance["score"]:.1f}%'
|
|
# Already scaled, use 1 for width and height
|
|
draw_box(
|
|
draw,
|
|
instance["box"],
|
|
img_width,
|
|
img_height,
|
|
box_label,
|
|
(255, 255, 0),
|
|
)
|
|
|
|
for path in paths:
|
|
_LOGGER.info("Saving results image to %s", path)
|
|
img.save(path)
|
|
|
|
def process_image(self, image):
|
|
"""Process the image."""
|
|
try:
|
|
img = Image.open(io.BytesIO(bytearray(image))).convert("RGB")
|
|
except UnidentifiedImageError:
|
|
_LOGGER.warning("Unable to process image, bad data")
|
|
return
|
|
img_width, img_height = img.size
|
|
|
|
if self._aspect and abs((img_width / img_height) - self._aspect) > 0.1:
|
|
_LOGGER.debug(
|
|
"The image aspect: %s and the detector aspect: %s differ by more than 0.1",
|
|
(img_width / img_height),
|
|
self._aspect,
|
|
)
|
|
|
|
# Run detection
|
|
start = time.monotonic()
|
|
response = self._doods.detect(
|
|
image, dconfig=self._dconfig, detector_name=self._detector_name
|
|
)
|
|
_LOGGER.debug(
|
|
"doods detect: %s response: %s duration: %s",
|
|
self._dconfig,
|
|
response,
|
|
time.monotonic() - start,
|
|
)
|
|
|
|
matches = {}
|
|
total_matches = 0
|
|
|
|
if not response or "error" in response:
|
|
if "error" in response:
|
|
_LOGGER.error(response["error"])
|
|
self._matches = matches
|
|
self._total_matches = total_matches
|
|
return
|
|
|
|
for detection in response["detections"]:
|
|
score = detection["confidence"]
|
|
boxes = [
|
|
detection["top"],
|
|
detection["left"],
|
|
detection["bottom"],
|
|
detection["right"],
|
|
]
|
|
label = detection["label"]
|
|
|
|
# Exclude unlisted labels
|
|
if "*" not in self._dconfig and label not in self._dconfig:
|
|
continue
|
|
|
|
# Exclude matches outside global area definition
|
|
if self._covers:
|
|
if (
|
|
boxes[0] < self._area[0]
|
|
or boxes[1] < self._area[1]
|
|
or boxes[2] > self._area[2]
|
|
or boxes[3] > self._area[3]
|
|
):
|
|
continue
|
|
else:
|
|
if (
|
|
boxes[0] > self._area[2]
|
|
or boxes[1] > self._area[3]
|
|
or boxes[2] < self._area[0]
|
|
or boxes[3] < self._area[1]
|
|
):
|
|
continue
|
|
|
|
# Exclude matches outside label specific area definition
|
|
if self._label_areas.get(label):
|
|
if self._label_covers[label]:
|
|
if (
|
|
boxes[0] < self._label_areas[label][0]
|
|
or boxes[1] < self._label_areas[label][1]
|
|
or boxes[2] > self._label_areas[label][2]
|
|
or boxes[3] > self._label_areas[label][3]
|
|
):
|
|
continue
|
|
else:
|
|
if (
|
|
boxes[0] > self._label_areas[label][2]
|
|
or boxes[1] > self._label_areas[label][3]
|
|
or boxes[2] < self._label_areas[label][0]
|
|
or boxes[3] < self._label_areas[label][1]
|
|
):
|
|
continue
|
|
|
|
if label not in matches:
|
|
matches[label] = []
|
|
matches[label].append({"score": float(score), "box": boxes})
|
|
total_matches += 1
|
|
|
|
# Save Images
|
|
if total_matches and self._file_out:
|
|
paths = []
|
|
for path_template in self._file_out:
|
|
if isinstance(path_template, template.Template):
|
|
paths.append(
|
|
path_template.render(camera_entity=self._camera_entity)
|
|
)
|
|
else:
|
|
paths.append(path_template)
|
|
self._save_image(image, matches, paths)
|
|
|
|
self._matches = matches
|
|
self._total_matches = total_matches
|