core/homeassistant/components/bayesian/binary_sensor.py

319 lines
10 KiB
Python

"""Use Bayesian Inference to trigger a binary sensor."""
from collections import OrderedDict
import voluptuous as vol
from homeassistant.components.binary_sensor import PLATFORM_SCHEMA, BinarySensorDevice
from homeassistant.const import (
CONF_ABOVE,
CONF_BELOW,
CONF_DEVICE_CLASS,
CONF_ENTITY_ID,
CONF_NAME,
CONF_PLATFORM,
CONF_STATE,
CONF_VALUE_TEMPLATE,
STATE_UNKNOWN,
)
from homeassistant.core import callback
from homeassistant.helpers import condition
import homeassistant.helpers.config_validation as cv
from homeassistant.helpers.event import async_track_state_change
ATTR_OBSERVATIONS = "observations"
ATTR_OCCURRED_OBSERVATION_ENTITIES = "occurred_observation_entities"
ATTR_PROBABILITY = "probability"
ATTR_PROBABILITY_THRESHOLD = "probability_threshold"
CONF_OBSERVATIONS = "observations"
CONF_PRIOR = "prior"
CONF_TEMPLATE = "template"
CONF_PROBABILITY_THRESHOLD = "probability_threshold"
CONF_P_GIVEN_F = "prob_given_false"
CONF_P_GIVEN_T = "prob_given_true"
CONF_TO_STATE = "to_state"
DEFAULT_NAME = "Bayesian Binary Sensor"
DEFAULT_PROBABILITY_THRESHOLD = 0.5
NUMERIC_STATE_SCHEMA = vol.Schema(
{
CONF_PLATFORM: "numeric_state",
vol.Required(CONF_ENTITY_ID): cv.entity_id,
vol.Optional(CONF_ABOVE): vol.Coerce(float),
vol.Optional(CONF_BELOW): vol.Coerce(float),
vol.Required(CONF_P_GIVEN_T): vol.Coerce(float),
vol.Optional(CONF_P_GIVEN_F): vol.Coerce(float),
},
required=True,
)
STATE_SCHEMA = vol.Schema(
{
CONF_PLATFORM: CONF_STATE,
vol.Required(CONF_ENTITY_ID): cv.entity_id,
vol.Required(CONF_TO_STATE): cv.string,
vol.Required(CONF_P_GIVEN_T): vol.Coerce(float),
vol.Optional(CONF_P_GIVEN_F): vol.Coerce(float),
},
required=True,
)
TEMPLATE_SCHEMA = vol.Schema(
{
CONF_PLATFORM: CONF_TEMPLATE,
vol.Required(CONF_VALUE_TEMPLATE): cv.template,
vol.Required(CONF_P_GIVEN_T): vol.Coerce(float),
vol.Optional(CONF_P_GIVEN_F): vol.Coerce(float),
},
required=True,
)
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend(
{
vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string,
vol.Optional(CONF_DEVICE_CLASS): cv.string,
vol.Required(CONF_OBSERVATIONS): vol.Schema(
vol.All(
cv.ensure_list,
[vol.Any(NUMERIC_STATE_SCHEMA, STATE_SCHEMA, TEMPLATE_SCHEMA)],
)
),
vol.Required(CONF_PRIOR): vol.Coerce(float),
vol.Optional(
CONF_PROBABILITY_THRESHOLD, default=DEFAULT_PROBABILITY_THRESHOLD
): vol.Coerce(float),
}
)
def update_probability(prior, prob_given_true, prob_given_false):
"""Update probability using Bayes' rule."""
numerator = prob_given_true * prior
denominator = numerator + prob_given_false * (1 - prior)
probability = numerator / denominator
return probability
async def async_setup_platform(hass, config, async_add_entities, discovery_info=None):
"""Set up the Bayesian Binary sensor."""
name = config.get(CONF_NAME)
observations = config.get(CONF_OBSERVATIONS)
prior = config.get(CONF_PRIOR)
probability_threshold = config.get(CONF_PROBABILITY_THRESHOLD)
device_class = config.get(CONF_DEVICE_CLASS)
async_add_entities(
[
BayesianBinarySensor(
name, prior, observations, probability_threshold, device_class
)
],
True,
)
class BayesianBinarySensor(BinarySensorDevice):
"""Representation of a Bayesian sensor."""
def __init__(self, name, prior, observations, probability_threshold, device_class):
"""Initialize the Bayesian sensor."""
self._name = name
self._observations = observations
self._probability_threshold = probability_threshold
self._device_class = device_class
self._deviation = False
self.prior = prior
self.probability = prior
self.current_observations = OrderedDict({})
self.observations_by_entity = self._build_observations_by_entity()
self.observation_handlers = {
"numeric_state": self._process_numeric_state,
"state": self._process_state,
"template": self._process_template,
}
async def async_added_to_hass(self):
"""
Call when entity about to be added.
All relevant update logic for instance attributes occurs within this closure.
Other methods in this class are designed to avoid directly modifying instance
attributes, by instead focusing on returning relevant data back to this method.
The goal of this method is to ensure that `self.current_observations` and `self.probability`
are set on a best-effort basis when this entity is register with hass.
In addition, this method must register the state listener defined within, which
will be called any time a relevant entity changes its state.
"""
@callback
def async_threshold_sensor_state_listener(entity, _old_state, new_state):
"""
Handle sensor state changes.
When a state changes, we must update our list of current observations,
then calculate the new probability.
"""
if new_state.state == STATE_UNKNOWN:
return
self.current_observations.update(self._record_entity_observations(entity))
self.probability = self._calculate_new_probability()
self.hass.async_add_job(self.async_update_ha_state, True)
self.current_observations.update(self._initialize_current_observations())
self.probability = self._calculate_new_probability()
async_track_state_change(
self.hass,
self.observations_by_entity,
async_threshold_sensor_state_listener,
)
def _initialize_current_observations(self):
local_observations = OrderedDict({})
for entity in self.observations_by_entity:
local_observations.update(self._record_entity_observations(entity))
return local_observations
def _record_entity_observations(self, entity):
local_observations = OrderedDict({})
entity_obs_list = self.observations_by_entity[entity]
for entity_obs in entity_obs_list:
platform = entity_obs["platform"]
should_trigger = self.observation_handlers[platform](entity_obs)
if should_trigger:
obs_entry = {"entity_id": entity, **entity_obs}
else:
obs_entry = None
local_observations[entity_obs["id"]] = obs_entry
return local_observations
def _calculate_new_probability(self):
prior = self.prior
for obs in self.current_observations.values():
if obs is not None:
prior = update_probability(
prior,
obs["prob_given_true"],
obs.get("prob_given_false", 1 - obs["prob_given_true"]),
)
return prior
def _build_observations_by_entity(self):
"""
Build and return data structure of the form below.
{
"sensor.sensor1": [{"id": 0, ...}, {"id": 1, ...}],
"sensor.sensor2": [{"id": 2, ...}],
...
}
Each "observation" must be recognized uniquely, and it should be possible
for all relevant observations to be looked up via their `entity_id`.
"""
observations_by_entity = {}
for ind, obs in enumerate(self._observations):
obs["id"] = ind
if "entity_id" in obs:
entity_ids = [obs["entity_id"]]
elif "value_template" in obs:
entity_ids = obs.get(CONF_VALUE_TEMPLATE).extract_entities()
for e_id in entity_ids:
obs_list = observations_by_entity.get(e_id, [])
obs_list.append(obs)
observations_by_entity[e_id] = obs_list
return observations_by_entity
def _process_numeric_state(self, entity_observation):
"""Return True if numeric condition is met."""
entity = entity_observation["entity_id"]
should_trigger = condition.async_numeric_state(
self.hass,
entity,
entity_observation.get("below"),
entity_observation.get("above"),
None,
entity_observation,
)
return should_trigger
def _process_state(self, entity_observation):
"""Return True if state conditions are met."""
entity = entity_observation["entity_id"]
should_trigger = condition.state(
self.hass, entity, entity_observation.get("to_state")
)
return should_trigger
def _process_template(self, entity_observation):
"""Return True if template condition is True."""
template = entity_observation.get(CONF_VALUE_TEMPLATE)
template.hass = self.hass
should_trigger = condition.async_template(
self.hass, template, entity_observation
)
return should_trigger
@property
def name(self):
"""Return the name of the sensor."""
return self._name
@property
def is_on(self):
"""Return true if sensor is on."""
return self._deviation
@property
def should_poll(self):
"""No polling needed."""
return False
@property
def device_class(self):
"""Return the sensor class of the sensor."""
return self._device_class
@property
def device_state_attributes(self):
"""Return the state attributes of the sensor."""
print(self.current_observations)
print(self.observations_by_entity)
return {
ATTR_OBSERVATIONS: list(self.current_observations.values()),
ATTR_OCCURRED_OBSERVATION_ENTITIES: list(
{
obs.get("entity_id")
for obs in self.current_observations.values()
if obs is not None
}
),
ATTR_PROBABILITY: round(self.probability, 2),
ATTR_PROBABILITY_THRESHOLD: self._probability_threshold,
}
async def async_update(self):
"""Get the latest data and update the states."""
self._deviation = bool(self.probability >= self._probability_threshold)