core/homeassistant/components/statistics/sensor.py

772 lines
26 KiB
Python

"""Support for statistics for sensor values."""
from __future__ import annotations
from collections import deque
from collections.abc import Callable
import contextlib
from datetime import datetime, timedelta
import logging
import statistics
from typing import Any, cast
import voluptuous as vol
from homeassistant.components.binary_sensor import DOMAIN as BINARY_SENSOR_DOMAIN
from homeassistant.components.recorder import get_instance, history
from homeassistant.components.sensor import (
DEVICE_CLASS_STATE_CLASSES,
PLATFORM_SCHEMA,
SensorDeviceClass,
SensorEntity,
SensorStateClass,
)
from homeassistant.const import (
ATTR_DEVICE_CLASS,
ATTR_UNIT_OF_MEASUREMENT,
CONF_ENTITY_ID,
CONF_NAME,
CONF_UNIQUE_ID,
PERCENTAGE,
STATE_UNAVAILABLE,
STATE_UNKNOWN,
)
from homeassistant.core import (
CALLBACK_TYPE,
Event,
HomeAssistant,
State,
callback,
split_entity_id,
)
from homeassistant.helpers import config_validation as cv
from homeassistant.helpers.entity_platform import AddEntitiesCallback
from homeassistant.helpers.event import (
async_track_point_in_utc_time,
async_track_state_change_event,
)
from homeassistant.helpers.reload import async_setup_reload_service
from homeassistant.helpers.start import async_at_start
from homeassistant.helpers.typing import ConfigType, DiscoveryInfoType, StateType
from homeassistant.util import dt as dt_util
from homeassistant.util.enum import try_parse_enum
from . import DOMAIN, PLATFORMS
_LOGGER = logging.getLogger(__name__)
# Stats for attributes only
STAT_AGE_COVERAGE_RATIO = "age_coverage_ratio"
STAT_BUFFER_USAGE_RATIO = "buffer_usage_ratio"
STAT_SOURCE_VALUE_VALID = "source_value_valid"
# All sensor statistics
STAT_AVERAGE_LINEAR = "average_linear"
STAT_AVERAGE_STEP = "average_step"
STAT_AVERAGE_TIMELESS = "average_timeless"
STAT_CHANGE = "change"
STAT_CHANGE_SAMPLE = "change_sample"
STAT_CHANGE_SECOND = "change_second"
STAT_COUNT = "count"
STAT_COUNT_BINARY_ON = "count_on"
STAT_COUNT_BINARY_OFF = "count_off"
STAT_DATETIME_NEWEST = "datetime_newest"
STAT_DATETIME_OLDEST = "datetime_oldest"
STAT_DATETIME_VALUE_MAX = "datetime_value_max"
STAT_DATETIME_VALUE_MIN = "datetime_value_min"
STAT_DISTANCE_95P = "distance_95_percent_of_values"
STAT_DISTANCE_99P = "distance_99_percent_of_values"
STAT_DISTANCE_ABSOLUTE = "distance_absolute"
STAT_MEAN = "mean"
STAT_MEDIAN = "median"
STAT_NOISINESS = "noisiness"
STAT_PERCENTILE = "percentile"
STAT_STANDARD_DEVIATION = "standard_deviation"
STAT_SUM = "sum"
STAT_SUM_DIFFERENCES = "sum_differences"
STAT_SUM_DIFFERENCES_NONNEGATIVE = "sum_differences_nonnegative"
STAT_TOTAL = "total"
STAT_VALUE_MAX = "value_max"
STAT_VALUE_MIN = "value_min"
STAT_VARIANCE = "variance"
# Statistics supported by a sensor source (numeric)
STATS_NUMERIC_SUPPORT = {
STAT_AVERAGE_LINEAR,
STAT_AVERAGE_STEP,
STAT_AVERAGE_TIMELESS,
STAT_CHANGE_SAMPLE,
STAT_CHANGE_SECOND,
STAT_CHANGE,
STAT_COUNT,
STAT_DATETIME_NEWEST,
STAT_DATETIME_OLDEST,
STAT_DATETIME_VALUE_MAX,
STAT_DATETIME_VALUE_MIN,
STAT_DISTANCE_95P,
STAT_DISTANCE_99P,
STAT_DISTANCE_ABSOLUTE,
STAT_MEAN,
STAT_MEDIAN,
STAT_NOISINESS,
STAT_PERCENTILE,
STAT_STANDARD_DEVIATION,
STAT_SUM,
STAT_SUM_DIFFERENCES,
STAT_SUM_DIFFERENCES_NONNEGATIVE,
STAT_TOTAL,
STAT_VALUE_MAX,
STAT_VALUE_MIN,
STAT_VARIANCE,
}
# Statistics supported by a binary_sensor source
STATS_BINARY_SUPPORT = {
STAT_AVERAGE_STEP,
STAT_AVERAGE_TIMELESS,
STAT_COUNT,
STAT_COUNT_BINARY_ON,
STAT_COUNT_BINARY_OFF,
STAT_DATETIME_NEWEST,
STAT_DATETIME_OLDEST,
STAT_MEAN,
}
STATS_NOT_A_NUMBER = {
STAT_DATETIME_NEWEST,
STAT_DATETIME_OLDEST,
STAT_DATETIME_VALUE_MAX,
STAT_DATETIME_VALUE_MIN,
}
STATS_DATETIME = {
STAT_DATETIME_NEWEST,
STAT_DATETIME_OLDEST,
STAT_DATETIME_VALUE_MAX,
STAT_DATETIME_VALUE_MIN,
}
# Statistics which retain the unit of the source entity
STATS_NUMERIC_RETAIN_UNIT = {
STAT_AVERAGE_LINEAR,
STAT_AVERAGE_STEP,
STAT_AVERAGE_TIMELESS,
STAT_CHANGE,
STAT_DISTANCE_95P,
STAT_DISTANCE_99P,
STAT_DISTANCE_ABSOLUTE,
STAT_MEAN,
STAT_MEDIAN,
STAT_NOISINESS,
STAT_PERCENTILE,
STAT_STANDARD_DEVIATION,
STAT_SUM,
STAT_SUM_DIFFERENCES,
STAT_SUM_DIFFERENCES_NONNEGATIVE,
STAT_TOTAL,
STAT_VALUE_MAX,
STAT_VALUE_MIN,
}
# Statistics which produce percentage ratio from binary_sensor source entity
STATS_BINARY_PERCENTAGE = {
STAT_AVERAGE_STEP,
STAT_AVERAGE_TIMELESS,
STAT_MEAN,
}
CONF_STATE_CHARACTERISTIC = "state_characteristic"
CONF_SAMPLES_MAX_BUFFER_SIZE = "sampling_size"
CONF_MAX_AGE = "max_age"
CONF_PRECISION = "precision"
CONF_PERCENTILE = "percentile"
DEFAULT_NAME = "Statistical characteristic"
DEFAULT_PRECISION = 2
ICON = "mdi:calculator"
def valid_state_characteristic_configuration(config: dict[str, Any]) -> dict[str, Any]:
"""Validate that the characteristic selected is valid for the source sensor type, throw if it isn't."""
is_binary = split_entity_id(config[CONF_ENTITY_ID])[0] == BINARY_SENSOR_DOMAIN
characteristic = cast(str, config[CONF_STATE_CHARACTERISTIC])
if (is_binary and characteristic not in STATS_BINARY_SUPPORT) or (
not is_binary and characteristic not in STATS_NUMERIC_SUPPORT
):
raise vol.ValueInvalid(
"The configured characteristic '{}' is not supported for the configured"
" source sensor".format(characteristic)
)
return config
def valid_boundary_configuration(config: dict[str, Any]) -> dict[str, Any]:
"""Validate that max_age, sampling_size, or both are provided."""
if (
config.get(CONF_SAMPLES_MAX_BUFFER_SIZE) is None
and config.get(CONF_MAX_AGE) is None
):
raise vol.RequiredFieldInvalid(
"The sensor configuration must provide 'max_age' and/or 'sampling_size'"
)
return config
_PLATFORM_SCHEMA_BASE = PLATFORM_SCHEMA.extend(
{
vol.Required(CONF_ENTITY_ID): cv.entity_id,
vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string,
vol.Optional(CONF_UNIQUE_ID): cv.string,
vol.Required(CONF_STATE_CHARACTERISTIC): cv.string,
vol.Optional(CONF_SAMPLES_MAX_BUFFER_SIZE): vol.All(
vol.Coerce(int), vol.Range(min=1)
),
vol.Optional(CONF_MAX_AGE): cv.time_period,
vol.Optional(CONF_PRECISION, default=DEFAULT_PRECISION): vol.Coerce(int),
vol.Optional(CONF_PERCENTILE, default=50): vol.All(
vol.Coerce(int), vol.Range(min=1, max=99)
),
}
)
PLATFORM_SCHEMA = vol.All(
_PLATFORM_SCHEMA_BASE,
valid_state_characteristic_configuration,
valid_boundary_configuration,
)
async def async_setup_platform(
hass: HomeAssistant,
config: ConfigType,
async_add_entities: AddEntitiesCallback,
discovery_info: DiscoveryInfoType | None = None,
) -> None:
"""Set up the Statistics sensor."""
await async_setup_reload_service(hass, DOMAIN, PLATFORMS)
async_add_entities(
new_entities=[
StatisticsSensor(
source_entity_id=config[CONF_ENTITY_ID],
name=config[CONF_NAME],
unique_id=config.get(CONF_UNIQUE_ID),
state_characteristic=config[CONF_STATE_CHARACTERISTIC],
samples_max_buffer_size=config.get(CONF_SAMPLES_MAX_BUFFER_SIZE),
samples_max_age=config.get(CONF_MAX_AGE),
precision=config[CONF_PRECISION],
percentile=config[CONF_PERCENTILE],
)
],
update_before_add=True,
)
class StatisticsSensor(SensorEntity):
"""Representation of a Statistics sensor."""
def __init__(
self,
source_entity_id: str,
name: str,
unique_id: str | None,
state_characteristic: str,
samples_max_buffer_size: int | None,
samples_max_age: timedelta | None,
precision: int,
percentile: int,
) -> None:
"""Initialize the Statistics sensor."""
self._attr_icon: str = ICON
self._attr_name: str = name
self._attr_should_poll: bool = False
self._attr_unique_id: str | None = unique_id
self._source_entity_id: str = source_entity_id
self.is_binary: bool = (
split_entity_id(self._source_entity_id)[0] == BINARY_SENSOR_DOMAIN
)
self._state_characteristic: str = state_characteristic
self._samples_max_buffer_size: int | None = samples_max_buffer_size
self._samples_max_age: timedelta | None = samples_max_age
self._precision: int = precision
self._percentile: int = percentile
self._value: StateType | datetime = None
self._unit_of_measurement: str | None = None
self._available: bool = False
self.states: deque[float | bool] = deque(maxlen=self._samples_max_buffer_size)
self.ages: deque[datetime] = deque(maxlen=self._samples_max_buffer_size)
self.attributes: dict[str, StateType] = {}
self._state_characteristic_fn: Callable[
[], StateType | datetime
] = self._callable_characteristic_fn(self._state_characteristic)
self._update_listener: CALLBACK_TYPE | None = None
async def async_added_to_hass(self) -> None:
"""Register callbacks."""
@callback
def async_stats_sensor_state_listener(event: Event) -> None:
"""Handle the sensor state changes."""
if (new_state := event.data.get("new_state")) is None:
return
self._add_state_to_queue(new_state)
self.async_schedule_update_ha_state(True)
async def async_stats_sensor_startup(_: HomeAssistant) -> None:
"""Add listener and get recorded state."""
_LOGGER.debug("Startup for %s", self.entity_id)
self.async_on_remove(
async_track_state_change_event(
self.hass,
[self._source_entity_id],
async_stats_sensor_state_listener,
)
)
if "recorder" in self.hass.config.components:
self.hass.async_create_task(self._initialize_from_database())
self.async_on_remove(async_at_start(self.hass, async_stats_sensor_startup))
def _add_state_to_queue(self, new_state: State) -> None:
"""Add the state to the queue."""
self._available = new_state.state != STATE_UNAVAILABLE
if new_state.state == STATE_UNAVAILABLE:
self.attributes[STAT_SOURCE_VALUE_VALID] = None
return
if new_state.state in (STATE_UNKNOWN, None, ""):
self.attributes[STAT_SOURCE_VALUE_VALID] = False
return
try:
if self.is_binary:
assert new_state.state in ("on", "off")
self.states.append(new_state.state == "on")
else:
self.states.append(float(new_state.state))
self.ages.append(new_state.last_updated)
self.attributes[STAT_SOURCE_VALUE_VALID] = True
except ValueError:
self.attributes[STAT_SOURCE_VALUE_VALID] = False
_LOGGER.error(
"%s: parsing error. Expected number or binary state, but received '%s'",
self.entity_id,
new_state.state,
)
return
self._unit_of_measurement = self._derive_unit_of_measurement(new_state)
def _derive_unit_of_measurement(self, new_state: State) -> str | None:
base_unit: str | None = new_state.attributes.get(ATTR_UNIT_OF_MEASUREMENT)
unit: str | None
if self.is_binary and self._state_characteristic in STATS_BINARY_PERCENTAGE:
unit = PERCENTAGE
elif not base_unit:
unit = None
elif self._state_characteristic in STATS_NUMERIC_RETAIN_UNIT:
unit = base_unit
elif self._state_characteristic in STATS_NOT_A_NUMBER:
unit = None
elif self._state_characteristic in (
STAT_COUNT,
STAT_COUNT_BINARY_ON,
STAT_COUNT_BINARY_OFF,
):
unit = None
elif self._state_characteristic == STAT_VARIANCE:
unit = base_unit + "²"
elif self._state_characteristic == STAT_CHANGE_SAMPLE:
unit = base_unit + "/sample"
elif self._state_characteristic == STAT_CHANGE_SECOND:
unit = base_unit + "/s"
return unit
@property
def device_class(self) -> SensorDeviceClass | None:
"""Return the class of this device."""
if self._state_characteristic in STATS_DATETIME:
return SensorDeviceClass.TIMESTAMP
if self._state_characteristic in STATS_NUMERIC_RETAIN_UNIT:
source_state = self.hass.states.get(self._source_entity_id)
if source_state is None:
return None
source_device_class = source_state.attributes.get(ATTR_DEVICE_CLASS)
if source_device_class is None:
return None
sensor_device_class = try_parse_enum(SensorDeviceClass, source_device_class)
if sensor_device_class is None:
return None
sensor_state_classes = DEVICE_CLASS_STATE_CLASSES.get(
sensor_device_class, set()
)
if SensorStateClass.MEASUREMENT not in sensor_state_classes:
return None
return sensor_device_class
return None
@property
def state_class(self) -> SensorStateClass | None:
"""Return the state class of this entity."""
if self._state_characteristic in STATS_NOT_A_NUMBER:
return None
return SensorStateClass.MEASUREMENT
@property
def native_value(self) -> StateType | datetime:
"""Return the state of the sensor."""
return self._value
@property
def native_unit_of_measurement(self) -> str | None:
"""Return the unit the value is expressed in."""
return self._unit_of_measurement
@property
def available(self) -> bool:
"""Return the availability of the sensor linked to the source sensor."""
return self._available
@property
def extra_state_attributes(self) -> dict[str, StateType] | None:
"""Return the state attributes of the sensor."""
return {
key: value for key, value in self.attributes.items() if value is not None
}
def _purge_old_states(self, max_age: timedelta) -> None:
"""Remove states which are older than a given age."""
now = dt_util.utcnow()
_LOGGER.debug(
"%s: purging records older then %s(%s)",
self.entity_id,
dt_util.as_local(now - max_age),
self._samples_max_age,
)
while self.ages and (now - self.ages[0]) > max_age:
_LOGGER.debug(
"%s: purging record with datetime %s(%s)",
self.entity_id,
dt_util.as_local(self.ages[0]),
(now - self.ages[0]),
)
self.ages.popleft()
self.states.popleft()
def _next_to_purge_timestamp(self) -> datetime | None:
"""Find the timestamp when the next purge would occur."""
if self.ages and self._samples_max_age:
# Take the oldest entry from the ages list and add the configured max_age.
# If executed after purging old states, the result is the next timestamp
# in the future when the oldest state will expire.
return self.ages[0] + self._samples_max_age
return None
async def async_update(self) -> None:
"""Get the latest data and updates the states."""
_LOGGER.debug("%s: updating statistics", self.entity_id)
if self._samples_max_age is not None:
self._purge_old_states(self._samples_max_age)
self._update_attributes()
self._update_value()
# If max_age is set, ensure to update again after the defined interval.
if timestamp := self._next_to_purge_timestamp():
_LOGGER.debug("%s: scheduling update at %s", self.entity_id, timestamp)
if self._update_listener:
self._update_listener()
self._update_listener = None
@callback
def _scheduled_update(now: datetime) -> None:
"""Timer callback for sensor update."""
_LOGGER.debug("%s: executing scheduled update", self.entity_id)
self.async_schedule_update_ha_state(True)
self._update_listener = None
self._update_listener = async_track_point_in_utc_time(
self.hass, _scheduled_update, timestamp
)
def _fetch_states_from_database(self) -> list[State]:
"""Fetch the states from the database."""
_LOGGER.debug("%s: initializing values from the database", self.entity_id)
lower_entity_id = self._source_entity_id.lower()
if self._samples_max_age is not None:
start_date = (
dt_util.utcnow() - self._samples_max_age - timedelta(microseconds=1)
)
_LOGGER.debug(
"%s: retrieve records not older then %s",
self.entity_id,
start_date,
)
else:
start_date = datetime.fromtimestamp(0, tz=dt_util.UTC)
_LOGGER.debug("%s: retrieving all records", self.entity_id)
return history.state_changes_during_period(
self.hass,
start_date,
entity_id=lower_entity_id,
descending=True,
limit=self._samples_max_buffer_size,
include_start_time_state=False,
).get(lower_entity_id, [])
async def _initialize_from_database(self) -> None:
"""Initialize the list of states from the database.
The query will get the list of states in DESCENDING order so that we
can limit the result to self._sample_size. Afterwards reverse the
list so that we get it in the right order again.
If MaxAge is provided then query will restrict to entries younger then
current datetime - MaxAge.
"""
if states := await get_instance(self.hass).async_add_executor_job(
self._fetch_states_from_database
):
for state in reversed(states):
self._add_state_to_queue(state)
self.async_schedule_update_ha_state(True)
_LOGGER.debug("%s: initializing from database completed", self.entity_id)
def _update_attributes(self) -> None:
"""Calculate and update the various attributes."""
if self._samples_max_buffer_size is not None:
self.attributes[STAT_BUFFER_USAGE_RATIO] = round(
len(self.states) / self._samples_max_buffer_size, 2
)
if self._samples_max_age is not None:
if len(self.states) >= 1:
self.attributes[STAT_AGE_COVERAGE_RATIO] = round(
(self.ages[-1] - self.ages[0]).total_seconds()
/ self._samples_max_age.total_seconds(),
2,
)
else:
self.attributes[STAT_AGE_COVERAGE_RATIO] = None
def _update_value(self) -> None:
"""Front to call the right statistical characteristics functions.
One of the _stat_*() functions is represented by self._state_characteristic_fn().
"""
value = self._state_characteristic_fn()
if self._state_characteristic not in STATS_NOT_A_NUMBER:
with contextlib.suppress(TypeError):
value = round(cast(float, value), self._precision)
if self._precision == 0:
value = int(value)
self._value = value
def _callable_characteristic_fn(
self, characteristic: str
) -> Callable[[], StateType | datetime]:
"""Return the function callable of one characteristic function."""
function: Callable[[], StateType | datetime] = getattr(
self,
f"_stat_binary_{characteristic}"
if self.is_binary
else f"_stat_{characteristic}",
)
return function
# Statistics for numeric sensor
def _stat_average_linear(self) -> StateType:
if len(self.states) >= 2:
area: float = 0
for i in range(1, len(self.states)):
area += (
0.5
* (self.states[i] + self.states[i - 1])
* (self.ages[i] - self.ages[i - 1]).total_seconds()
)
age_range_seconds = (self.ages[-1] - self.ages[0]).total_seconds()
return area / age_range_seconds
return None
def _stat_average_step(self) -> StateType:
if len(self.states) >= 2:
area: float = 0
for i in range(1, len(self.states)):
area += (
self.states[i - 1]
* (self.ages[i] - self.ages[i - 1]).total_seconds()
)
age_range_seconds = (self.ages[-1] - self.ages[0]).total_seconds()
return area / age_range_seconds
return None
def _stat_average_timeless(self) -> StateType:
return self._stat_mean()
def _stat_change(self) -> StateType:
if len(self.states) > 0:
return self.states[-1] - self.states[0]
return None
def _stat_change_sample(self) -> StateType:
if len(self.states) > 1:
return (self.states[-1] - self.states[0]) / (len(self.states) - 1)
return None
def _stat_change_second(self) -> StateType:
if len(self.states) > 1:
age_range_seconds = (self.ages[-1] - self.ages[0]).total_seconds()
if age_range_seconds > 0:
return (self.states[-1] - self.states[0]) / age_range_seconds
return None
def _stat_count(self) -> StateType:
return len(self.states)
def _stat_datetime_newest(self) -> datetime | None:
if len(self.states) > 0:
return self.ages[-1]
return None
def _stat_datetime_oldest(self) -> datetime | None:
if len(self.states) > 0:
return self.ages[0]
return None
def _stat_datetime_value_max(self) -> datetime | None:
if len(self.states) > 0:
return self.ages[self.states.index(max(self.states))]
return None
def _stat_datetime_value_min(self) -> datetime | None:
if len(self.states) > 0:
return self.ages[self.states.index(min(self.states))]
return None
def _stat_distance_95_percent_of_values(self) -> StateType:
if len(self.states) >= 2:
return 2 * 1.96 * cast(float, self._stat_standard_deviation())
return None
def _stat_distance_99_percent_of_values(self) -> StateType:
if len(self.states) >= 2:
return 2 * 2.58 * cast(float, self._stat_standard_deviation())
return None
def _stat_distance_absolute(self) -> StateType:
if len(self.states) > 0:
return max(self.states) - min(self.states)
return None
def _stat_mean(self) -> StateType:
if len(self.states) > 0:
return statistics.mean(self.states)
return None
def _stat_median(self) -> StateType:
if len(self.states) > 0:
return statistics.median(self.states)
return None
def _stat_noisiness(self) -> StateType:
if len(self.states) >= 2:
return cast(float, self._stat_sum_differences()) / (len(self.states) - 1)
return None
def _stat_percentile(self) -> StateType:
if len(self.states) >= 2:
percentiles = statistics.quantiles(self.states, n=100, method="exclusive")
return percentiles[self._percentile - 1]
return None
def _stat_standard_deviation(self) -> StateType:
if len(self.states) >= 2:
return statistics.stdev(self.states)
return None
def _stat_sum(self) -> StateType:
if len(self.states) > 0:
return sum(self.states)
return None
def _stat_sum_differences(self) -> StateType:
if len(self.states) >= 2:
diff_sum = sum(
abs(j - i) for i, j in zip(list(self.states), list(self.states)[1:])
)
return diff_sum
return None
def _stat_sum_differences_nonnegative(self) -> StateType:
if len(self.states) >= 2:
diff_sum_nn = sum(
(j - i if j >= i else j - 0)
for i, j in zip(list(self.states), list(self.states)[1:])
)
return diff_sum_nn
return None
def _stat_total(self) -> StateType:
return self._stat_sum()
def _stat_value_max(self) -> StateType:
if len(self.states) > 0:
return max(self.states)
return None
def _stat_value_min(self) -> StateType:
if len(self.states) > 0:
return min(self.states)
return None
def _stat_variance(self) -> StateType:
if len(self.states) >= 2:
return statistics.variance(self.states)
return None
# Statistics for binary sensor
def _stat_binary_average_step(self) -> StateType:
if len(self.states) >= 2:
on_seconds: float = 0
for i in range(1, len(self.states)):
if self.states[i - 1] is True:
on_seconds += (self.ages[i] - self.ages[i - 1]).total_seconds()
age_range_seconds = (self.ages[-1] - self.ages[0]).total_seconds()
return 100 / age_range_seconds * on_seconds
return None
def _stat_binary_average_timeless(self) -> StateType:
return self._stat_binary_mean()
def _stat_binary_count(self) -> StateType:
return len(self.states)
def _stat_binary_count_on(self) -> StateType:
return self.states.count(True)
def _stat_binary_count_off(self) -> StateType:
return self.states.count(False)
def _stat_binary_datetime_newest(self) -> datetime | None:
return self._stat_datetime_newest()
def _stat_binary_datetime_oldest(self) -> datetime | None:
return self._stat_datetime_oldest()
def _stat_binary_mean(self) -> StateType:
if len(self.states) > 0:
return 100.0 / len(self.states) * self.states.count(True)
return None