core/homeassistant/components/doods/image_processing.py

391 lines
13 KiB
Python

"""Support for the DOODS service."""
import io
import logging
import os
import time
from PIL import Image, ImageDraw, UnidentifiedImageError
from pydoods import PyDOODS
import voluptuous as vol
from homeassistant.components.image_processing import (
CONF_CONFIDENCE,
CONF_ENTITY_ID,
CONF_NAME,
CONF_SOURCE,
PLATFORM_SCHEMA,
ImageProcessingEntity,
)
from homeassistant.const import CONF_TIMEOUT
from homeassistant.core import split_entity_id
from homeassistant.helpers import template
import homeassistant.helpers.config_validation as cv
from homeassistant.util.pil import draw_box
_LOGGER = logging.getLogger(__name__)
ATTR_MATCHES = "matches"
ATTR_SUMMARY = "summary"
ATTR_TOTAL_MATCHES = "total_matches"
ATTR_PROCESS_TIME = "process_time"
CONF_URL = "url"
CONF_AUTH_KEY = "auth_key"
CONF_DETECTOR = "detector"
CONF_LABELS = "labels"
CONF_AREA = "area"
CONF_COVERS = "covers"
CONF_TOP = "top"
CONF_BOTTOM = "bottom"
CONF_RIGHT = "right"
CONF_LEFT = "left"
CONF_FILE_OUT = "file_out"
AREA_SCHEMA = vol.Schema(
{
vol.Optional(CONF_BOTTOM, default=1): cv.small_float,
vol.Optional(CONF_LEFT, default=0): cv.small_float,
vol.Optional(CONF_RIGHT, default=1): cv.small_float,
vol.Optional(CONF_TOP, default=0): cv.small_float,
vol.Optional(CONF_COVERS, default=True): cv.boolean,
}
)
LABEL_SCHEMA = vol.Schema(
{
vol.Required(CONF_NAME): cv.string,
vol.Optional(CONF_AREA): AREA_SCHEMA,
vol.Optional(CONF_CONFIDENCE): vol.Range(min=0, max=100),
}
)
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend(
{
vol.Required(CONF_URL): cv.string,
vol.Required(CONF_DETECTOR): cv.string,
vol.Required(CONF_TIMEOUT, default=90): cv.positive_int,
vol.Optional(CONF_AUTH_KEY, default=""): cv.string,
vol.Optional(CONF_FILE_OUT, default=[]): vol.All(cv.ensure_list, [cv.template]),
vol.Optional(CONF_CONFIDENCE, default=0.0): vol.Range(min=0, max=100),
vol.Optional(CONF_LABELS, default=[]): vol.All(
cv.ensure_list, [vol.Any(cv.string, LABEL_SCHEMA)]
),
vol.Optional(CONF_AREA): AREA_SCHEMA,
}
)
def setup_platform(hass, config, add_entities, discovery_info=None):
"""Set up the Doods client."""
url = config[CONF_URL]
auth_key = config[CONF_AUTH_KEY]
detector_name = config[CONF_DETECTOR]
timeout = config[CONF_TIMEOUT]
doods = PyDOODS(url, auth_key, timeout)
response = doods.get_detectors()
if not isinstance(response, dict):
_LOGGER.warning("Could not connect to doods server: %s", url)
return
detector = {}
for server_detector in response["detectors"]:
if server_detector["name"] == detector_name:
detector = server_detector
break
if not detector:
_LOGGER.warning(
"Detector %s is not supported by doods server %s", detector_name, url
)
return
entities = []
for camera in config[CONF_SOURCE]:
entities.append(
Doods(
hass,
camera[CONF_ENTITY_ID],
camera.get(CONF_NAME),
doods,
detector,
config,
)
)
add_entities(entities)
class Doods(ImageProcessingEntity):
"""Doods image processing service client."""
def __init__(self, hass, camera_entity, name, doods, detector, config):
"""Initialize the DOODS entity."""
self.hass = hass
self._camera_entity = camera_entity
if name:
self._name = name
else:
name = split_entity_id(camera_entity)[1]
self._name = f"Doods {name}"
self._doods = doods
self._file_out = config[CONF_FILE_OUT]
self._detector_name = detector["name"]
# detector config and aspect ratio
self._width = None
self._height = None
self._aspect = None
if detector["width"] and detector["height"]:
self._width = detector["width"]
self._height = detector["height"]
self._aspect = self._width / self._height
# the base confidence
dconfig = {}
confidence = config[CONF_CONFIDENCE]
# handle labels and specific detection areas
labels = config[CONF_LABELS]
self._label_areas = {}
self._label_covers = {}
for label in labels:
if isinstance(label, dict):
label_name = label[CONF_NAME]
if label_name not in detector["labels"] and label_name != "*":
_LOGGER.warning("Detector does not support label %s", label_name)
continue
# If label confidence is not specified, use global confidence
label_confidence = label.get(CONF_CONFIDENCE)
if not label_confidence:
label_confidence = confidence
if label_name not in dconfig or dconfig[label_name] > label_confidence:
dconfig[label_name] = label_confidence
# Label area
label_area = label.get(CONF_AREA)
self._label_areas[label_name] = [0, 0, 1, 1]
self._label_covers[label_name] = True
if label_area:
self._label_areas[label_name] = [
label_area[CONF_TOP],
label_area[CONF_LEFT],
label_area[CONF_BOTTOM],
label_area[CONF_RIGHT],
]
self._label_covers[label_name] = label_area[CONF_COVERS]
else:
if label not in detector["labels"] and label != "*":
_LOGGER.warning("Detector does not support label %s", label)
continue
self._label_areas[label] = [0, 0, 1, 1]
self._label_covers[label] = True
if label not in dconfig or dconfig[label] > confidence:
dconfig[label] = confidence
if not dconfig:
dconfig["*"] = confidence
# Handle global detection area
self._area = [0, 0, 1, 1]
self._covers = True
area_config = config.get(CONF_AREA)
if area_config:
self._area = [
area_config[CONF_TOP],
area_config[CONF_LEFT],
area_config[CONF_BOTTOM],
area_config[CONF_RIGHT],
]
self._covers = area_config[CONF_COVERS]
template.attach(hass, self._file_out)
self._dconfig = dconfig
self._matches = {}
self._total_matches = 0
self._last_image = None
self._process_time = 0
@property
def camera_entity(self):
"""Return camera entity id from process pictures."""
return self._camera_entity
@property
def name(self):
"""Return the name of the image processor."""
return self._name
@property
def state(self):
"""Return the state of the entity."""
return self._total_matches
@property
def device_state_attributes(self):
"""Return device specific state attributes."""
return {
ATTR_MATCHES: self._matches,
ATTR_SUMMARY: {
label: len(values) for label, values in self._matches.items()
},
ATTR_TOTAL_MATCHES: self._total_matches,
ATTR_PROCESS_TIME: self._process_time,
}
def _save_image(self, image, matches, paths):
img = Image.open(io.BytesIO(bytearray(image))).convert("RGB")
img_width, img_height = img.size
draw = ImageDraw.Draw(img)
# Draw custom global region/area
if self._area != [0, 0, 1, 1]:
draw_box(
draw, self._area, img_width, img_height, "Detection Area", (0, 255, 255)
)
for label, values in matches.items():
# Draw custom label regions/areas
if label in self._label_areas and self._label_areas[label] != [0, 0, 1, 1]:
box_label = f"{label.capitalize()} Detection Area"
draw_box(
draw,
self._label_areas[label],
img_width,
img_height,
box_label,
(0, 255, 0),
)
# Draw detected objects
for instance in values:
box_label = f'{label} {instance["score"]:.1f}%'
# Already scaled, use 1 for width and height
draw_box(
draw,
instance["box"],
img_width,
img_height,
box_label,
(255, 255, 0),
)
for path in paths:
_LOGGER.info("Saving results image to %s", path)
if not os.path.exists(os.path.dirname(path)):
os.makedirs(os.path.dirname(path), exist_ok=True)
img.save(path)
def process_image(self, image):
"""Process the image."""
try:
img = Image.open(io.BytesIO(bytearray(image))).convert("RGB")
except UnidentifiedImageError:
_LOGGER.warning("Unable to process image, bad data")
return
img_width, img_height = img.size
if self._aspect and abs((img_width / img_height) - self._aspect) > 0.1:
_LOGGER.debug(
"The image aspect: %s and the detector aspect: %s differ by more than 0.1",
(img_width / img_height),
self._aspect,
)
# Run detection
start = time.monotonic()
response = self._doods.detect(
image, dconfig=self._dconfig, detector_name=self._detector_name
)
_LOGGER.debug(
"doods detect: %s response: %s duration: %s",
self._dconfig,
response,
time.monotonic() - start,
)
matches = {}
total_matches = 0
if not response or "error" in response:
if "error" in response:
_LOGGER.error(response["error"])
self._matches = matches
self._total_matches = total_matches
self._process_time = time.monotonic() - start
return
for detection in response["detections"]:
score = detection["confidence"]
boxes = [
detection["top"],
detection["left"],
detection["bottom"],
detection["right"],
]
label = detection["label"]
# Exclude unlisted labels
if "*" not in self._dconfig and label not in self._dconfig:
continue
# Exclude matches outside global area definition
if self._covers:
if (
boxes[0] < self._area[0]
or boxes[1] < self._area[1]
or boxes[2] > self._area[2]
or boxes[3] > self._area[3]
):
continue
else:
if (
boxes[0] > self._area[2]
or boxes[1] > self._area[3]
or boxes[2] < self._area[0]
or boxes[3] < self._area[1]
):
continue
# Exclude matches outside label specific area definition
if self._label_areas.get(label):
if self._label_covers[label]:
if (
boxes[0] < self._label_areas[label][0]
or boxes[1] < self._label_areas[label][1]
or boxes[2] > self._label_areas[label][2]
or boxes[3] > self._label_areas[label][3]
):
continue
else:
if (
boxes[0] > self._label_areas[label][2]
or boxes[1] > self._label_areas[label][3]
or boxes[2] < self._label_areas[label][0]
or boxes[3] < self._label_areas[label][1]
):
continue
if label not in matches:
matches[label] = []
matches[label].append({"score": float(score), "box": boxes})
total_matches += 1
# Save Images
if total_matches and self._file_out:
paths = []
for path_template in self._file_out:
if isinstance(path_template, template.Template):
paths.append(
path_template.render(camera_entity=self._camera_entity)
)
else:
paths.append(path_template)
self._save_image(image, matches, paths)
self._matches = matches
self._total_matches = total_matches
self._process_time = time.monotonic() - start