""" Component that will perform facial detection and identification via facebox. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/image_processing.facebox """ import base64 import logging import requests import voluptuous as vol from homeassistant.const import ( ATTR_ENTITY_ID, ATTR_NAME) from homeassistant.core import split_entity_id import homeassistant.helpers.config_validation as cv from homeassistant.components.image_processing import ( PLATFORM_SCHEMA, ImageProcessingFaceEntity, ATTR_CONFIDENCE, CONF_SOURCE, CONF_ENTITY_ID, CONF_NAME, DOMAIN) from homeassistant.const import ( CONF_IP_ADDRESS, CONF_PORT, CONF_PASSWORD, CONF_USERNAME, HTTP_BAD_REQUEST, HTTP_OK, HTTP_UNAUTHORIZED) _LOGGER = logging.getLogger(__name__) ATTR_BOUNDING_BOX = 'bounding_box' ATTR_CLASSIFIER = 'classifier' ATTR_IMAGE_ID = 'image_id' ATTR_ID = 'id' ATTR_MATCHED = 'matched' FACEBOX_NAME = 'name' CLASSIFIER = 'facebox' DATA_FACEBOX = 'facebox_classifiers' FILE_PATH = 'file_path' SERVICE_TEACH_FACE = 'facebox_teach_face' PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_IP_ADDRESS): cv.string, vol.Required(CONF_PORT): cv.port, vol.Optional(CONF_USERNAME): cv.string, vol.Optional(CONF_PASSWORD): cv.string, }) SERVICE_TEACH_SCHEMA = vol.Schema({ vol.Optional(ATTR_ENTITY_ID): cv.entity_ids, vol.Required(ATTR_NAME): cv.string, vol.Required(FILE_PATH): cv.string, }) def check_box_health(url, username, password): """Check the health of the classifier and return its id if healthy.""" kwargs = {} if username: kwargs['auth'] = requests.auth.HTTPBasicAuth(username, password) try: response = requests.get( url, **kwargs ) if response.status_code == HTTP_UNAUTHORIZED: _LOGGER.error("AuthenticationError on %s", CLASSIFIER) return None if response.status_code == HTTP_OK: return response.json()['hostname'] except requests.exceptions.ConnectionError: _LOGGER.error("ConnectionError: Is %s running?", CLASSIFIER) return None def encode_image(image): """base64 encode an image stream.""" base64_img = base64.b64encode(image).decode('ascii') return base64_img def get_matched_faces(faces): """Return the name and rounded confidence of matched faces.""" return {face['name']: round(face['confidence'], 2) for face in faces if face['matched']} def parse_faces(api_faces): """Parse the API face data into the format required.""" known_faces = [] for entry in api_faces: face = {} if entry['matched']: # This data is only in matched faces. face[FACEBOX_NAME] = entry['name'] face[ATTR_IMAGE_ID] = entry['id'] else: # Lets be explicit. face[FACEBOX_NAME] = None face[ATTR_IMAGE_ID] = None face[ATTR_CONFIDENCE] = round(100.0*entry['confidence'], 2) face[ATTR_MATCHED] = entry['matched'] face[ATTR_BOUNDING_BOX] = entry['rect'] known_faces.append(face) return known_faces def post_image(url, image, username, password): """Post an image to the classifier.""" kwargs = {} if username: kwargs['auth'] = requests.auth.HTTPBasicAuth(username, password) try: response = requests.post( url, json={"base64": encode_image(image)}, **kwargs ) if response.status_code == HTTP_UNAUTHORIZED: _LOGGER.error("AuthenticationError on %s", CLASSIFIER) return None return response except requests.exceptions.ConnectionError: _LOGGER.error("ConnectionError: Is %s running?", CLASSIFIER) return None def teach_file(url, name, file_path, username, password): """Teach the classifier a name associated with a file.""" kwargs = {} if username: kwargs['auth'] = requests.auth.HTTPBasicAuth(username, password) try: with open(file_path, 'rb') as open_file: response = requests.post( url, data={FACEBOX_NAME: name, ATTR_ID: file_path}, files={'file': open_file}, **kwargs ) if response.status_code == HTTP_UNAUTHORIZED: _LOGGER.error("AuthenticationError on %s", CLASSIFIER) elif response.status_code == HTTP_BAD_REQUEST: _LOGGER.error("%s teaching of file %s failed with message:%s", CLASSIFIER, file_path, response.text) except requests.exceptions.ConnectionError: _LOGGER.error("ConnectionError: Is %s running?", CLASSIFIER) def valid_file_path(file_path): """Check that a file_path points to a valid file.""" try: cv.isfile(file_path) return True except vol.Invalid: _LOGGER.error( "%s error: Invalid file path: %s", CLASSIFIER, file_path) return False def setup_platform(hass, config, add_devices, discovery_info=None): """Set up the classifier.""" if DATA_FACEBOX not in hass.data: hass.data[DATA_FACEBOX] = [] ip_address = config[CONF_IP_ADDRESS] port = config[CONF_PORT] username = config.get(CONF_USERNAME) password = config.get(CONF_PASSWORD) url_health = "http://{}:{}/healthz".format(ip_address, port) hostname = check_box_health(url_health, username, password) if hostname is None: return entities = [] for camera in config[CONF_SOURCE]: facebox = FaceClassifyEntity( ip_address, port, username, password, hostname, camera[CONF_ENTITY_ID], camera.get(CONF_NAME)) entities.append(facebox) hass.data[DATA_FACEBOX].append(facebox) add_devices(entities) def service_handle(service): """Handle for services.""" entity_ids = service.data.get('entity_id') classifiers = hass.data[DATA_FACEBOX] if entity_ids: classifiers = [c for c in classifiers if c.entity_id in entity_ids] for classifier in classifiers: name = service.data.get(ATTR_NAME) file_path = service.data.get(FILE_PATH) classifier.teach(name, file_path) hass.services.register( DOMAIN, SERVICE_TEACH_FACE, service_handle, schema=SERVICE_TEACH_SCHEMA) class FaceClassifyEntity(ImageProcessingFaceEntity): """Perform a face classification.""" def __init__(self, ip_address, port, username, password, hostname, camera_entity, name=None): """Init with the API key and model id.""" super().__init__() self._url_check = "http://{}:{}/{}/check".format( ip_address, port, CLASSIFIER) self._url_teach = "http://{}:{}/{}/teach".format( ip_address, port, CLASSIFIER) self._username = username self._password = password self._hostname = hostname self._camera = camera_entity if name: self._name = name else: camera_name = split_entity_id(camera_entity)[1] self._name = "{} {}".format(CLASSIFIER, camera_name) self._matched = {} def process_image(self, image): """Process an image.""" response = post_image( self._url_check, image, self._username, self._password) if response: response_json = response.json() if response_json['success']: total_faces = response_json['facesCount'] faces = parse_faces(response_json['faces']) self._matched = get_matched_faces(faces) self.process_faces(faces, total_faces) else: self.total_faces = None self.faces = [] self._matched = {} def teach(self, name, file_path): """Teach classifier a face name.""" if (not self.hass.config.is_allowed_path(file_path) or not valid_file_path(file_path)): return teach_file( self._url_teach, name, file_path, self._username, self._password) @property def camera_entity(self): """Return camera entity id from process pictures.""" return self._camera @property def name(self): """Return the name of the sensor.""" return self._name @property def device_state_attributes(self): """Return the classifier attributes.""" return { 'matched_faces': self._matched, 'total_matched_faces': len(self._matched), 'hostname': self._hostname }